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Abstract

I obtain informative bounds on network statistics in a partially observed network whose

formation I explicitly model. Partially observed networks are commonplace due to, for

example, partial sampling or incomplete responses in surveys. Network statistics (e.g.,

centrality measures) are not point identified when the network is partially observed.

Worst-case bounds on network statistics can be obtained by letting all missing links

take values zero and one. I dramatically improve on the worst-case bounds by speci-

fying a structural model for network formation. An important feature of the model is

that I allow for positive externalities in the network-formation process. The network-

formation model and network statistics are set identified due to multiplicity of equilib-

ria. I provide a computationally tractable outer approximation of the joint identified

region for preferences determining network-formation processes and network statistics.

In a simulation study on Katz-Bonacich centrality, I find that worst-case bounds that

do not use the network formation model are 44 times wider than the bounds I obtain

from my procedure.
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1 Introduction

A wide array of economic outcomes of interest are generated through processes that involve

the social interaction of individuals. In a classroom setting, for example, students’ schooling

effort and subsequent test scores are determined in part by their friends’ effort provision

through the process of knowledge spillovers. As another example, information about vaccines

in developing countries and consequently vaccine uptake is spread through word of mouth.

The position of an individual determines, at least in part, her economic outcomes as well

as her influence on the economic outcomes of others. Centrality measures are network

statistics that allow researchers to parsimoniously capture different features of an individual’s

network position. In practice, however, parts of the network are often unobserved due

to subsampling or low response rates to surveys inquiring about social interactions (e.g.,

Banerjee, Chandrasekhar, Duflo, and Jackson (2013)). Consequently, centrality measures

and other statistics of the network are not point identified.

I obtain informative bounds on network statistics and their impact on economic outcomes of

interest in a partially observed network whose formation I explicitly model. My method to

recover bounds on a network statistic applies to social networks, e.g., friendships between stu-

dents in a classroom. I propose a model in which the network is endogenous and individuals

choose their friends based on their preferences. A distinctive feature of my network-formation

model is that preferences depend on the topology of the network, e.g., the popularity of oth-

ers. As a result, individuals strategically choose their friends and some individuals may only

form friendships with popular individuals. I next use this network-formation model to infer

the missing portion of the network. The network-formation model admits multiple equilibria,

resulting in partial identification of the model. I recover bounds on the missing portion of the

network and hence bounds on network statistics of interest. My main theoretical result is in

obtaining a joint outer region for both the preferences determining network formation pro-

cesses and for network statistics. This result applies broadly to a range of network statistics

including intercentrality (Ballester, Calvó-Armengol, & Zenou, 2006), diffusion centrality

(Banerjee et al., 2013), and Katz-Bonacich centrality (KBC) (Katz, 1953; Bonacich, 1987).1

The problem of partially observed network data is common in applied research. Due to

resource constraints, researchers may only elicit social interaction information from a sub-

sample of the population of interest – whether households in remote villages (Banerjee et al.,

2013) or students in a school (Add Health, Harris (2009)). Low response rates also result

1Many more examples are given in Bloch, Jackson, and Tebaldi (2019).
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in partially observed networks. For example, the response rate in the Add Health dataset

ranges from 77.5% to 88.6%. My model allows for this type of partial network information

as well as any setting where network links are missing at random, but the identity of the

individuals are known. I assume that the researcher partially observes a large number of

undirected social networks. Each network is a cross-sectional snapshot and can be thought of

as a market with a fixed population of individuals. These partially observed networks may,

for example, come from a random survey.2 I assume the characteristics that influence social

connections, e.g, gender, race, ect. are observed for all individuals in the network. While

I do allow for characteristics that are unobservable to the researcher, these characteristics

must satisfy an independence assumption commonly maintained in the literature.

The network is endogenously formed according to a structural model, which governs how

people choose their friends. For example, students in a classroom form friendships with

other students based on their characteristics and the popularity of other students. This

structural framework allows me to both partially reconstruct the unobserved component of

the network and execute counterfactual analysis where, for instance, a set of individuals

or links are removed from the network. A distinctive feature of my network-formation

model relative to previous work on identification with sampled networks (Chandrasekhar &

Lewis, 2016) is that it allows for positive externalities. Social actors derive positive utility

from connections with popular individuals and from individuals with whom they have many

mutual friends. Allowing for positive externalities is important for obtaining good model

fit. Standard models without spillovers predict that triads – three people that are connected

with one another – form at much lower frequencies than what is found empirically, and

allowing for spillovers is critical in correcting this issue (Jackson et al., 2008; Graham, 2016).

Positive externalities also imply strategic behavior; there is ample evidence to suggest that

individuals act strategically when forming friendships.3

Identification and estimation in my framework is challenging. The network-formation model

admits multiple equilibria. Consequently, the model is incomplete (Tamer, 2003) without

further restrictions on the function that selects which particular equilibrium is realized in

2In the survey example, the researcher obtains information on all the social interactions between indi-
viduals in the subsample. In addition, the researcher can observe the connections that individuals in the
subsample have with individuals not in the subsample. Connections between individuals who are not in the
subsample are not observed. Consequently, the star network is obtained for each network (Chandrasekhar
& Lewis, 2016), see Figures F1a and F1b.

3See, for example, Jackson and Wolinsky (1996); Bala and Goyal (2000); Echenique, Fryer Jr, and
Kaufman (2006); Jackson et al. (2008); Currarini, Jackson, and Pin (2009); Leung (2015b); Mele (2017);
Badev (2018); Sheng (2018); Gualdani (2019).
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cases of multiplicity – generally called the selection mechanism in the partial identifica-

tion litearture (Tamer, 2010; Molinari, 2019).4 The sharp identified region contains all

network-formation parameters such that the parameterized model is consistent with the ob-

served data. I theoretically characterize the sharp identified region for the network-formation

model under partially observed network data using an approach similar to that described

in Gualdani (2019) and Molinari (2019). The sharp region cannot, however, be feasibly

computed, because doing so would entail checking that O(22
n(n−1)

2 ) moment inequalities are

satisfied, with n denoting the number of individuals in the network (in a small classroom

with 5 students, that amounts to 10308 moment inequalities). In light of this challenge,

I make progress by implementing the following steps. I leverage a useful property of the

network-formation model called strategic complementarity for the purpose of identification.5

Strategic complementarity implies that the marginal value of a friendship is increasing as

more friendships form in the network. As a result, all equilibria belong to an easily char-

acterizable lattice (Miyauchi, 2016), which I call the admissible lattice. I prove that the

admissible lattice can be computed in no more than n(n−1)
2
− n + 1 evaluations of a matrix

function. This is important for establishing computational feasibility of the model. I also

show how to use the admissible lattice for identification of the network-formation model and

to obtain bounds on KBC and other centrality measures.

My main theorem establishes an outer region (a set containing the sharp identified region)

using these bounds coupled with subnetwork identification (Sheng, 2018). Subnetwork iden-

tification bounds the joint probability of a subnetwork and the full characteristic vector that

determines friendships by: (1) the probability that the subnetwork is the unique equilibrium;

and (2) the probability that the subnetwork is in the set of equilibria. I extend this frame-

work in two ways. First, I take expectations with respect to characteristics of individuals

not contained in the subnetwork. This reduces the number of moment inequalities resulting

in a feasible method and does not suffer from inference issues related to many moments.

Second, I explicitly use the lattice structure of the equilibria set to enhance the feasibility of

the model.

To show the applicability of my paper to a general economics context, I present results from

a simulation study. My method for identifying the network-formation model is 100 to 1000

times faster than existing methods based on a comparison of run-time between my method

4The resulting identification problem is similar to the well known one affecting inference in entry games
(see, for example, Ciliberto and Tamer (2009); Beresteanu, Molchanov, and Molinari (2011)).

5Strategic complementarity is also referred to as supermodularity in the mathematical economics literature
(Tarski et al., 1955; Topkis, 1978).
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and the results reported in Sheng (2018). These comparisons are based on subnetworks of

size two, and I expect my method to offer an even larger advantage for larger subnetworks.

I report results based on subnetworks of up to size five. In the simulation study, I allow for

two channels of spillovers in the network-formation process: popularity spillover and mutual

friend spillover. With only one spillover channel, I obtain very tight bounds on the network-

formation model and on KBC. In particular, the identified region for the popularity spillover

is [0.996, 1.012] when the true value is equal to 1. With respect to KBC, worst-case bounds

range from 2.850 to 5.532, while the true value is 4.020.6 In contrast, I obtain bounds on

effort equal to [4.016, 4.239] when applying my framework with one channel of spillovers.

This is a 12 fold improvement on the worst-case bounds. When I allow for two channels

of spillovers, I find fairly wide bounds on the network-formation parameters. However, the

bounds on KBC remain informative, ranging from 3.678 to 3.730 when the true value is

3.690.

The rest of this paper is organized as follows. Section 2 describes the related literature.

Section 3 details the data requirements. Section 4 provides details on centrality measures

and the model. Section 5 discusses identification. Section 6 presents the application and

Section 7 concludes. All proofs are relegated to Appendix B. Appendix Table G1 summarizes

all relevant notation for this paper.

2 Related Literature

I make contributions to two distinct literatures: (1) estimating network models and statistics

with missing network data; and (2) identification, estimation, and computation of partially

identified, structural network formation models. To do so, I leverage useful results from

games with strategic complementaries.

There is a growing literature on estimating network models with missing network data, rang-

ing from partial network data (e.g., survey data or misclassified links) to completely unob-

served networks. My paper belongs to the literature on partial network data. Chandrasekhar

and Lewis (2016) is the closest paper to mine. They assume the researcher has network sur-

vey data and propose a two-step method for identifying network statistics. The network is

generated according to an exogenous process and is applied to a model where economic out-

6The worst-case bounds result from imposing no assumptions on the unobserved links. These can be
thought of as Manski worst-case bounds (Manski, 1989, 2003). In the case when the marginal return to
effort is positive for all individuals, these bounds are obtained by evaluating the unobserved entries in the
network to 0 and 1. from which no assumptions are imposed.
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comes are a linear function of a network statistic.7 I extend their framework by endogenizing

the network and allowing for strategic network formation. Liu (2013) provides conditions

under which the structural parameters of the linear social interactions model are identified

with a sampled network. The focus of my paper is on identifying network statistics from a

partially observed network in a more general context and not on the linear social interac-

tions model per se. The equilibrium level of effort in the social interactions model is equal

to KBC. Therefore, my framework easily extends to obtaining bounds on peer effort subject

to availability of outcome data and maintaining assumptions outlined in Liu (2013). Partial

network data may also result from link misclassification where, for example, two individuals

are friends and the friendship is incorrectly recorded as not existing in the data. Lewbel,

Qu, and Tang (2019) allow for link misclassification and maintain linear restrictions on the

structural parameters of the linear social interactions model to obtain point identification. I

assume that the links are correctly reported, but I do not impose linear restrictions on the

structural parameters.

There is a separate literature where the network is completely unobserved. Various as-

sumptions have been proposed to obtain point identification for the data generating process

governing network formation or the underlying structural parameters for a game played on

the network. I do not maintain these assumptions. For example, de Paula, Rasul, and Souza

(2018), Rose (2015), Gautier and Rose (2016), and Manresa (2016) identify and estimate

the structural parameters of the social interactions model and de Paula et al. also estimate

the network links when the network is completely unobserved. These papers assume that

the network is sparse and require panel data consisting of multiple draws of outcomes on

a fixed network. Boucher and Houndetoungan (2019) assume observability of aggregate

network statistics and obtain point identification for the structural parameters of the so-

cial interactions model. Battaglini, Patacchini, and Rainone (2019) propose a model where

one observes only the outcomes of legislators (legislative effectiveness) and put forward a

new network competitive equilibrium concept. This can be thought of as a general market

equilibrium where effectiveness is analogous to market-clearing prices. They assume that

legislators optimally choose friends while taking effectiveness as given (i.e., they are price

takers).

The second literature that I contribute to is on identification and estimation of network-

7There is a large literature using exogenous processes to impute networks with misclassified nodes (i.e.,
individuals) and links, e.g., see Robins, Pattison, and Woolcock (2004); Smith and Moody (2013); Huisman
(2014); Krause, Huisman, Steglich, and Sniiders (2018) and references within. These methods are not suitable
for social network formation as they do not allow for strategic network formation.
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formation models. I assume that the network forms according to a model with complete

information and strategic complementarity. There are a variety of strategies that have

been proposed to identify the structural parameters for this model, see Graham (2014),

Chandrasekhar (2016), de Paula (2017), de Paula (2019), or Graham (2019) for an overview.

I use subnetwork identification, which was first proposed by Sheng (2018). I extend this

procedure, as mentioned in the introduction, by (1) integrating out characteristics of indi-

viduals not in the subnetwork, and (2) bounding the distribution of subnetworks using the

admissible lattice (a set defined below that contains all network equilibria). Other identifica-

tion strategies have also been suggested. For example, Miyauchi (2016) proposes the use of

monotone network statistics to partially identify the structural parameters of the model. I

can augment my identification procedure with monotone network statistics. However, these

statistics may require full knowledge of the network, which is not feasible in my data setting.

de Paula, Richards-Shubik, and Tamer (2015) consider a single, growing network. Restric-

tions are imposed on the richness of unobserved heterogeneity and the number of direct

friends (i.e., the network is sparse). I do not impose these restrictions and, in particular, I

allow each dyadic pair to receive an i.i.d taste shock. Menzel (2015) also considers a growing

network and shows that the asymptotic probability of forming a link is summarized by a

conditional inclusive value.8 Menzel proposes a maximum likelihood estimator based on the

asymptotic distribution after imposing additional assumptions for point identification. Mele

(2017) proposes that individuals meet sequentially at random and obtains point identifica-

tion for the network-formation parameters. Specifying the meeting process completes the

model and results in a unique equilibrium. Christakis, Fowler, Imbens, and Kalyanaraman

(2010), Mele and Zhu (2017), Badev (2018), Boucher (2018), and Hsieh, Lee, and Boucher

(2019) also assume a similar meeting processes to obtain point identification. In contrast to

these papers, I do not impose restrictions on the selection mechanism and, as a result, my

method allows for any meeting process.

There are alternate models of network-formation to the one that I propose that can also cap-

ture positive externalities from friendship formation. For example, dynamic models can allow

friendship formation to depend on past popularity of individuals in the network (Goldsmith-

Pinkham & Imbens, 2013; Graham, 2016; Lee, Fosdick, & McCormick, 2018; Bykhovskaya,

2019). These dynamic models require rich panel network data. They also do not allow for

contemporaneous strategic interaction and, as a consequence, admit a unique equilibrium.

8The inclusive value is a sufficient statistic for the choice probabilities of the available alternatives in the
standard Logit model for multinomial choice (Train, 2009).
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Incomplete information games with strategic interaction have also been proposed in the lit-

erature (Leung, 2015a; Song & van der Schaar, 2015; de Mart́ı & Zenou, 2015; Ridder &

Sheng, 2017). Incomplete information assumes that individuals do not observe taste shocks

before choosing friends. One criticism of an incomplete information game is that it suffers

from ex-post regret, where individuals would like to reevaluate the links after the network

has formed. I assume that the observed static network is the equilibrium of a long-run game

where individuals have all relevant information available to them. Based on their preferences,

individuals are unwilling to remove friends or mutually form new friendships. As a result,

my model does not suffer from ex-post regret.

I show how to theoretically characterize the sharp identified region for the network-formation

model with partially observed network data. This theoretical result builds on Molinari (2019)

who shows how to obtain the sharp identified region for the network-formation model that I

specify in this paper when the network is fully observed. Under a different network-formation

model than the one I consider, Gualdani (2019) shows how to theoretically characterize the

sharp identified region for her game. While the sharp identified region cannot be feasibly

computed in my model, it is an important ingredient for characterizing an outer region that

both can be feasibly computed and is informative about the underlying structural parameters

and the network statistic of interest.

Using theory from games with strategic complementarities (Topkis, 1978; Tarski et al., 1955;

Milgrom & Roberts, 1990), Miyauchi (2016) provides us with a useful characterization of

the set of pairwise stable networks. Similar characterizations have been applied in Nash

games, finite level rationalizability, and two-sided matching games (Jia, 2008; Molinari &

Rosen, 2008; Uetake & Watanabe, 2012; Nishida, 2014). A key insight of my paper is to use

the characterization to achieve computationally tractable bounds for the network formation

model and obtain bounds on network statistics, such as KBC, intercentrality, and diffusion

centrality.

3 Data

Before diving into the theoretical section of this paper, I discuss data requirements. These are

weak in the sense that I only require the observation of a small number of links between a set

of individuals to identify the network-formation model (i.e., a subnetwork – see Figure F2a).

As a motivating example for how a partially observed network may arise, consider a classroom

setting. The researcher collects information about students’ social interactions, which are
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represented by the network adjacency matrix G where Gij = 1 if and only if individuals i

and j are friends. However, due to financial and time constraints, the researcher subsamples

a set of students n̄ ⊂ n and asks who they are friends with. The interviewed students

reveal social ties that they have with everyone in the school population. As a result, the

connections between individuals in the subsample n̄ to individuals in n are revealed (shaded

area of Figure F1a). I assume that the network is undirected, so that i is friends with j

if and only if j is friends with i.9 As a result, links from individuals in n to n̄ are also

revealed and hence the shaded area in Figure F1b is observed by the researcher. I partition

the network into two components G = (Gn̄, G−n̄), where Gn̄ represents information known

to the researcher.

More generally, Gn̄ represents any network with missing links. The minimal requirement is

that all links are observed between a small set of individuals in n̄ ⊂ n. This is a very weak

requirement and holds, for instance, when the researcher asks one student in the classroom

to reveal a randomly chosen friend. While links to individuals outside of n̄ are not required

and the size of n̄ can trivially equal two, the bounds on the network statistic of interest

are tighter when more information is available. I assume that the researcher observes T

partially observed networks {Gn̄tt }Tt=1, where Gn̄tt is a random set of links from the network

Gt. These can be thought of as a cross-section from many markets. For instance, T may

count the number of schools surveyed (Harris, 2009) or the number of remote villages in

India (Banerjee et al., 2013). I also assume that the researcher has access to covariates xit

for all individuals in nt (e.g., from a census or school enrollment data).10

Assumption 1 (Observational Assumption). The researcher observes an i.i.d. sequence

{Gn̄tt ,xt}i∈nt,t=1,...,T with T → ∞. The partially observed network Gn̄tt contains a random

sample of links from Gt (i.e., links are missing at random).

Example 1 (Complete Survey Data). Consider the case where the partially observed network

Gn̄tt is constructed from a random survey of individuals in a population, n̄t ⊂ nt. Suppose

that all surveyed individuals reveal all of their friendships to the researcher. Assumption 1

holds this type of survey data.

9In certain contexts, we may believe that the network is directed. For example in a classroom, students
may form friendships with the athletic star, but the star does not reciprocate. My framework can be easily
extended to the case of directed networks by using directed network-formation models, e.g., Gualdani (2019).

10My framework can be extended to the case where we only have survey data on xt. The network is
reconstructed using the estimated distribution of xt. This, however, will result in wider bounds as I lose
information.
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4 Model

My framework can be thought of as a two-stage model. In the first stage the network is

formed according to a social network-formation model parameterized by θ ∈ Θ. In the

second stage, a network statistic d(G) results, where d : G → B is a known function and

B ⊆ Rp. The statistic can be a simple function of the network G, e.g., the number of links,

but also an endogenous outcome from a game played on the network. In the linear social

interactions game, for example, individuals simultaneously choose effort. The equilibrium

level of effort is equal to a statistic that has received much attention in the literature,

the Katz-Bonacich Centrality. Other second-stage applications are also considered in the

appendix, such as the game described in Battaglini and Patacchini (2018). The goal is

to learn about (θ, d(G)) given a distribution of observables (partially observed networks,

characteristics, and outcomes) P , under the conditions imposed by the model. I first discuss

important centrality measures and I illustrate worst-case bounds for these statistics when

no assumptions are imposed on the missing links.

4.1 Network Statistics and Centrality Measures

Centrality measures are network statistics that allow researchers to parsimoniously capture

different features of an individual’s network position. For example, KBC has been used to

characterize the way peer effects impact student outcomes (Calvó-Armengol, Patacchini, &

Zenou, 2009); intercentrality can identify the key player in a criminal network (Ballester et

al., 2006); and diffusion centrality is a strong predictor of how information will spread across

the network (Banerjee et al., 2013). For exposition, I first focus on KBC and then generalize

to other centrality measures in Section 4.1.2.

4.1.1 Katz-Bonacich Centrality

KBC was first proposed in Katz (1953) and further developed by Bonacich (1987). It is a

weighted measure of all paths leading to a particular individual, with shorter paths receiving

larger value. Individuals that have a lot of friends have a higher KBC than those with few

or no friends, ceteris paribus. Popular individuals that are connected to popular individuals

also have a higher KBC than popular individuals connected to isolated individuals.

Definition 1 (Weighted Katz-Bonacich Centrality). Consider a network G and fix a weight-

ing vector w ∈ Rn and a decay parameter λ ∈ R. The Weighted Katz-Bonacich Centrality

9



Figure 1: Worst-case bounds on peer effort. The solid line plots the true level of effort as a function of
the social multiplier λ, and the dotted lines plot worst-case bounds. Results are reported for a network of
size n = 100 with n̄ = 25 observed individuals in a Complete Network Survey. The network is generated
according to the model described in Section 6 with γ1 = γ2 = 0.5 and θ0 = 0.

is

dkbc(G;w, λ) ≡
∞∑
k=0

λkGkw.

The unweighted Katz-Bonacich Centrality corresponds to w = (1, . . . , 1)′, so that the ex-

pression simplifies to dkbc(G;λ) =
∑∞

k=0 λ
kGk.

The weighting vectorw allows for the possibility that certain individuals have larger influence

over their friends’ behavior. The weight wi can be negative in which case the individual is a

negative influencer. A path is a sequence of friendships between two individuals. The matrix

Gk counts all (not necessarily unique) paths of length k. The decay parameter λ controls

the importance of longer paths: longer paths contribute less to the value of KBC when λ

is small. As λ → 0, dkbc(G;w, λ) → w in which case all paths are irrelevant. Denote the

largest eigenvalue of G by µ(G). If λµ(G) < 1, then KBC is finite and given by

dkbc(G;w, λ) = (I − λG)−1w

Four economic applications relating to KBC are provided in Examples 8, 9, C1.

KBC requires full knowledge of the network and cannot be computed from a partially ob-

served network Gn̄. Intuitively, paths of length two – i.e., friends-of-friends – impact the
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value of KBC. Even in the case that we observe complete survey data (Example 1), not all

friends-of-friends are not observed. Worst-case bounds (Manski, 1989, 2003) on KBC are

obtained by imposing no restrictions on the unobserved links. Suppose that the weighting

vector is positive, w ∈ Rn
+. Then KBC is monotone in the network and worst-case bounds

are obtained by setting the unobserved links to zero or one. Figure 1 illustrates worst-case

bounds as a function of the decay parameter λ. When λ is small, long paths have little influ-

ence and KBC is driven by the first order term λ0G0w = w (normalized to one in this case).

As a result, the discrepancy between G and the worst-case assignments for its unobserved

portion is irrelevant and the worst-case bounds’ interval is thin. However, when the decay

parameter is larger, the discrepancy becomes a serious issue and the worst-case bounds are

very wide. This example illustrates the importance of accounting for unobserved links when

estimating network statistics, centrality measures, or equilibrium behavior.

While worst-case bounds can be uninformative, they do not rely on any data or model.

However, if we have a small amount of data on friendships, I can dramatically shrink the

bounds. To accomplish this, I need a network-formation model and a clever computational

approach. The network-formation model is discussed in Section 4.2 and the formal identifi-

cation approach is detailed in Section 5. First, I provide generic bounds on network statistics

(e.g., KBC) subject to G belonging to a “nice set” – a lattice.

4.1.2 Bounding Centrality Measures

I later show that, under the assumptions imposed by my network formation model, all

possible equilibria networks belong to a lattice. A lattice is a set of networks that are binary

and componentwise bounded between two networks G and G. Formally,

L(G,G) = {G ∈ G : G ≤ G ≤ G}, where G ≤ G.11

The goal is to solve the following problem

min/max
G∈L(G,G)

d(G), (1)

where d(G) is a network statistic of interest. The solution to Problem (1) improves on

the worst-case bounds by using information about the model to restrict the set of possible

networks to L(G,G). Since L(G,G) belongs to a discrete space, the näıve solution to Problem

11The partial order ≤ refers to element-wise dominance. That is, G ≤ G′ if and only if ∀i, j, Gij ≤ G′ij .
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(1) is to check all networks in L(G,G). If, however, G and G differ by k elements, then this

requires 2k evaluations of d(G) – even for relatively small values of k this is not feasible.

Monotonicity is a very useful property of a network statistic that delivers an analytical

solution to Problem (1).

Definition 2 (Monotonic Network Statistic). A network statistic d(G) is monotonically

increasing if and only if d(G) ≤ d(G′) for all networks G,G′ ∈ G such that G ≤ G′.

A network statistic d(G) is monotonically decreasing if and only if d(G) ≥ d(G′) for all

networks G,G′ ∈ G such that G ≤ G′.

Under monotonicity, the solutions to Problem (1) are the extreme points of the lattice.

Lemma 1. Fix G and G and consider a network statistic d(G).

1. If d(G) is monotonically increasing, then the solutions to Problem (1) are G and G,

respectively.

2. If d(G) is monotonically decreasing, then the solutions to Problem (1) are G and G,

respectively.

Remark 1. Lemma 1 is sharp in the sense that it delivers the exact solution to Problem (1).

That is, if we know from a model and data that the true network G belongs to L(G,G) and

we are unable to further refine this set, then Lemma 1 delivers the tightest possible bounds

on the network statistic.

Lemma 1 establishes bounds on many network statistics, including KBC, provided that the

sign of wi is the same for all individuals. I now provide a list of centrality measures that

Lemma 1 applies to. Each of these centrality measures are useful in parsimoniously describing

various forms of economic activity resulting from social interaction, and are commonly used

in many practical applications.12

Example 2 (Monotonic Katz-Bonacich Centrality). dkbc(G;w, λ) ≡
∑∞

k=0 λ
kGkw, where

λ ≥ 0. Suppose that the largest eigenvalue µ(G) of G satisfies λµ(G) < 1. In addition,

suppose that the weights have the same sign: w ∈ Rn
+ ∪ Rn

−. Then KBC is well defined and

12These centralities are summarized in Bloch et al. (2019). Bloch et al. show that all centrality measures
belong to a particular family that is characterized by set of axiom. That is, all centrality measures satisfies a
particular set of axioms and, hence, all are related to one another. These axioms, however, do not imply that
the statistic is monotonically increasing in the network. Indeed, eigenvector centrality is a counterexample.
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is monotonic in the network. An economic application for the monotonic KBC is given in

Example C2.

Example 3 (Diffusion Centrality). ddfi (G;λ,K) =
∑K

k=1

∑n
j=1 λ

kGk
ij, where λ ≥ 0. Diffu-

sion centrality is equal to a truncation of the unweighted KBC. In particular, all non-unique

paths up to length K enter this measure; KBC is the limiting case with K → ∞. Diffu-

sion centrality was proposed by Banerjee et al. (2013) and Banerjee, Chandrasekhar, Duflo,

and Jackson (2014) to capture the information flow of microfinance uptake in remote rural

villages in India.

Example 4 (Degree Centrality). ddegi (G) =
∑n

j=1Gij. Degree centrality is a measure of

popularity. It is useful for understanding the friendship paradox and its implication on the

statistical properties of peer effort (Jackson, 2019). Degree centrality has also been used to

understand power laws and disease epidemics (Easley & Kleinberg, 2010).

Example 5 (Closeness Centrality). dcci (G) = n−1∑n
j=1 ρij(G)

, where ρij(G) is the shortest distance

between i and j in network G. If i is isolated, then di(G) = 0.

A closely related centrality measure is harmonic centrality.

Example 6 (Harmonic Centrality). dhci (G) =
∑n

j=1
n−1
ρij(G)

. Harmonic and closeness cen-

trality have been proposed to capture the speed at which a message is transmitted through a

network (Bavelas, 1950; Sabidussi, 1966).

Example 7 (Decay Centrality). ddci (G;λ) =
∑n−1

k=1

∑n
j=1 λ

k
1(ρij(G) = k). While diffusion

centrality counts all paths up to length K and KBC counts all paths, decay centrality only

counts shortest paths. The maximum length of the shortest is equal to n−1. Decay centrality

has been proposed for optimal targeting/treatment in a social network (Banerjee et al., 2013;

Chatterjee & Dutta, 2016; Tsakas, 2016a, 2016b) and can lead to the greatest amount of

information diffusion about, e.g., a new vaccine.

Proposition 1. The centrality measures in Examples 2–7 are either monotonically increas-

ing or decreasing in the network. Hence, solutions to Problem (1) for these centrality mea-

sures are given by Lemma 1.
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There exist network statistics that are not monotonic in the network. Examples include

eigenvalue centrality, targeting centrality (Bramoullé & Genicot, 2018), and the nodal neigh-

borhood statistic in Bloch et al. (2019). Despite this, there still exist computationally feasible

bounds to Problem (1) for certain statistics. That is, I find d(G,G) and d(G,G) that are

informative and satisfy

d(G,G) ≤ min
G∈L(G,G)

d(G) and max
G∈L(G,G)

d(G) ≤ d(G,G).

These bounds are solved on a case-by-case basis. I now present two important examples, for

which I derive informative bounds in Propositions 2 and 3 below.

Example 8 (Non-monotonic Katz-Bonacich Centrality). Let dkbc(G;w, λ) ≡
∑∞

k=0 λ
kGkw.

and suppose that the largest eigenvalue of G denoted µ(G) satisfies λµ(G) < 1. However,

suppose that the weights do not have the same sign, so that wi > 0 and wj < 0 for some i

and j. KBC is not monotonic in G in this case. As a concrete example for this statistic,

consider the linear social interactions model. Taking the network G as given, suppose that

the students simultaneously choose schooling effort yi ∈ R to maximize the following utility

function:

vi(y, G;αi, φ) = αiyi −
1

2
y2
i + φ

n∑
j=1

Gijyiyj. (2)

The first term αiyi− 1
2
y2
i captures the direct benefit of effort. The term αi allows for heterogen-

ity in the marginal returns to effort and is typically modeled as a linear function of observable

characteristics z and an unobservable idiosyncratic shock. The second term φ
∑n

j=1Gijyiyj

captures local spillovers from direct friends exerting effort. The unique Nash equilibrium is

y∗(G;α, φ) = (I − φG)−1α = c(G;α, φ). That is, equilibrium effort is equal to KBC with

weights α and decay parameter φ. In this model, the marginal returns to effort αi can be

negative or positive. Consequently, KBC is generally not monotonic in the network.

Example 9 (Intercentrality). Denote intercentrality by dint(G;φ) ≡ dkbci (G;φ)

(I−φG)−1
ii

. Intercentrality

is a non-linear transformation of KBC and is a network statistic that can provide a guide

for determining the Key Player (Ballester et al., 2006; Zenou, 2016) – the individual who

if removed would result in the largest decrease in total activity. In a criminal network, the

Key Player is the person who law enforcement should target if the goal is to reduce criminal

14



activity. The Key Player is the solution to:

min
i=1,...,n

n∑
j=1

y∗i (G
[−i]),

where y∗i (G
[−i]) is the equilibrium level of effort after removing individual i from the network.

Under the assumptions on preferences detailed in their paper, Ballester et al. (2006) show

that the Key Player is the individual with the largest intercentrality.

Proposition 2. Fix w, φ,G, and G and order w

w = (w1, . . . , wn+ , wn++1, . . . , wn)

such that ∀i ≤ n+ : wi ≥ 0 and ∀i > n+ : wi < 0. Suppose that the largest eigenvalue of G

denoted µ(G) satisfies φµ(G) < 1. Define mappings d : G × G → Rn and d : G × G → Rn by

d(G,G;φ) = [(I − φG)−1
1 , . . . , (I − φG)−1

n+
, (I − φG)−1

n++1, . . . (I − φG)−1
n ]

d(G,G;φ) = [(I − φG)−1
1 , . . . , (I − φG)−1

n+
, (I − φG)−1

n++1, . . . , (I − φG)−1
n ]

where (I − φG)−1
j is the jth column of (I − φG)−1

1 . Then ∀i = 1, . . . , n:

[d(G,G;φ)w]i ≤ min
G∈L(G,G)

dkbci (G;w, φ)

[d(G,G;φ)w]i ≥ max
G∈L(G,G)

dkbci (G;w, φ)

Proposition 3. Fix φ,G, and G. Suppose that the largest eigenvalue of G denoted µ(G)

satisfies φµ(G) < 1. Then

dkbci (G;φ)

(I − φG)−1
ii

≤ min
G∈L(G,G)

dint(G;φ) and max
G∈L(G,G)

dint(G;φ) ≤ dkbci (G;φ)

(I − φG)−1
ii

Remark 2. There does not always exist a G ∈ L(G,G) such that d(G,G;φ) = (I − φG)−1,

and hence the bounds given in Propositions 2 and 3 are generally not sharp. See Appendix

B for details.

I present one final example for non-monotonic statistics in the appendix, see Example C1

and Proposition B1.
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When the researcher has access to partial network data, I have shown that worst-case bounds

– bounds obtained by imposing no restrictions on the missing links – can be uninformative. I

have obtained bounds on a wide range of centrality measures that are commonly used in the

applied networks literature subject to the network belonging to a generic lattice. I will now

specify a network-formation model that restricts the set of possible networks to a particular

lattice. The model can be estimated using the partially observed data to provide informative

bounds on the network statistic.

4.2 Network Formation Model

The network-formation model is off-the-shelf and is featured in many theoretical and struc-

tural network-related papers (Jackson & Wolinsky, 1996; de Paula et al., 2015; Currarini et

al., 2009; Miyauchi, 2016; Sheng, 2018), none of which focus on partially observed networks.

Specifically, I assume that individuals play a complete information, pairwise stable game and

that links are undirected. One important feature of the model is that it allows for positive

network externalities, resulting in individuals strategically choosing their friends.

Let n = {1, · · · , n} be the set of individuals in a population and let i, j, k, l ∈ n be arbitrary

individuals. The network is encoded by the adjacency matrix G where Gij = 1 if and only

if i and j are linked. The network is undirected, Gij = Gji, and there are no self loops,

Gii = 0. Denote the space of such matrices by

G = {G ∈ Zn×n2 : Gii = 0, Gij = Gji ∀i, j ∈ n}.

The notation G + {ij} denotes the network with the link ij added (i.e., G + {ij} has k, l

entry equal to Gkl for all kl 6= ij and Gij = 1). Similarly, G − {ij} denotes the network

with the link ij deleted. Each individual i ∈ n is characterized by a vector of observable

characteristics xi ∈ X (collect these in the matrix x = (xi)i∈n), a matrix of preference

shocks ε ≡ (εij)ij∈n ∈ E , and a network utility function πi : G × X × E × Θ → R. The

network utility function πi(·, ·, ·; θ) is parameterized by the same value θ0 for all individuals

and it represents the value that individual i places on network G ∈ G. Marginal utility is a

key ingredient in defining an equilibrium. In contrast to standard economic models, utility

is a function of the discrete network G. Hence, the marginal utility of a link is defined as

the difference in utilities when the link is present and when it is not present.

Definition 3 (Marginal Utility). The marginal utility of individual i over link ij is the
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mapping Πij : G × X × E ×Θ→ R defined as:

Πij(G,x, ε; θ) ≡ πi(G+ {ij},x, ε; θ)− πi(G− {ij},x, ε; θ).

I maintain the assumption of pairwise stability with non-transferable utility as an equilibrium

condition.13 Pairwise stability (Jackson & Wolinsky, 1996) ensures that any two individuals

are unwilling to mutually create a link and no individual is willing to sever a link. Other

equilibrium concepts have been proposed such as Nash equilibrium and coalition equilibrium.

The Nash equilibrium concept is not attractive in network games due to coordination failure

and, in particular, because the network with no links is a Nash equilibrium (Myerson, 1991;

Calvó-Armengol & İlkılıç, 2009). Coalition equilibrium is a refinement of pairwise stability

and ensures that no group of individuals are willing to renegotiate the set of links between

them (Myerson, 1977; Jackson & Wolinsky, 1996). I do not impose coalition equilibrium as it

is stronger than pairwise stability and I aim to impose minimal assumptions on equilibrium

behavior.

Definition 4 (Pairwise Stable Network). Given x, ε, and a payoff function πi, the network

G is said to be pairwise stable if the following conditions hold:

1. For all i, j ∈ n such that Gij = 1,

Πij(G,x, ε; θ) ≥ 0 and Πji(G,x, ε; θ) ≥ 0,

2. For all i, j ∈ n such that Gij = 0,

if Πij(G,x, ε; θ) > 0, then Πji(G,x, ε; θ) < 0.

A key assumption that I maintain is that marginal utility is monotonically increasing in

the network. Intuitively, this assumes that there are positive externalities when individuals

form friends and, in particular, allows students in the classroom to receive larger value from

connecting to the popular student. This type of assumption is also referred to as strategic

complementarity or supermodularity in the microeconomic theory literature (Tarski et al.,

1955; Topkis, 1978). The assumption allows me to refine the set of networks to a lattice and

13The game with transferable utility is discussed in Sheng (2018), and the game with directed networks is
discussed in Gualdani (2019).
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guarantees the existence of an equilibrium.

Assumption 2 (Monotonically Increasing). Marginal utility is monotonically increasing in

G: if G ≤ G′, then

Πij(G,x, ε; θ) ≤ Πij(G
′,x, ε; θ) ∀i, j ∈ n.

Monotonically increasing marginal utility is a strong assumption; it rules out competition

and cannibalization effects present in many Industrial Organization applications (Berry &

Jia, 2008; Jia, 2008; Nishida, 2014).14 Nonetheless it holds in many applications of interest,

such as models of social interaction where individuals tend to form connections with popular

individuals.

In the application I assume the following functional form for the utility function.

Assumption 3 (Linear Utility). Utility is given by

πi(G,x, ε; θ) ≡
∑
j∈n

Gij(u(xi,xj; θ) + εij) + γ1
1

n− 1

∑
j,k∈n:k 6=i

GijGjk + γ2
1

n− 2

∑
j,k∈n:k 6=i

GijGikGjk,

so that marginal utility is linear in parameters:

Πij(G,x, ε; θ) =u(xi,xj; θ) + εij + γ1
1

n− 1

∑
k∈n:k 6=i

Gjk + γ2
1

n− 2

∑
k∈n:k 6=i

GikGjk.

This particular specification for the marginal utility function has three components. The first

term, u(xi,xj, θ) + εij, is the direct benefit that i gets by connecting to individual j. This

term allows for homophily – that is, individuals who have similar characteristics are more

likely to become friends. Second, the popularity spillover is given by γ1
1

n−1

∑
j,k∈n:k 6=iGijGjk.

The term γ1
n−1

is the marginal value that individual i gets from having one more indirect link.

Finally, the mutual friend spillover is given by γ2
1

n−2

∑
j,k∈n:k 6=iGijGikGjk. The term γ1

n−2

is the marginal value that individual i gets from having one more mutual link. The two

spillover terms are normalized by their maximum values (n − 1) and (n − 2), so that the

spillovers takes values in [0, γ1] and [0, γ2], respectively. Under this utility specification

marginal utility is monotonically increasing provided that the popularity and mutual friend

14Jia (2008) shows that in a two-player network game with competition effects, a simple transformation of
the model can be performed to yield entry decisions that satisfy strategic complementarity. This, however,
cannot be generalized to markets with more than two players. The pairwise stable network game consists of
n > 2 players and, therefore, monotonically increasing marginal utility is required.
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spillovers are non-negative.

4.2.1 Equilibrium Results

There are three useful results related to the characterization and existence of the equilibrium

that are based on games with strategic complementarities (Tarski et al., 1955; Topkis, 1978;

Milgrom & Roberts, 1990; Jia, 2008), see Miyauchi (2016) for the network case. The first

result characterizes pairwise stability in terms of a fixed-point mapping.

Fixed-point Characterization. Fix x, ε, and a payoff functions πi. Define the mapping

V : G → G by

Vij(G) ≡ 1[Πij(G,x, ε; θ) ≥ 0]1[Πji(G,x, ε; θ) ≥ 0],

where 1(·) is the indicator function. The network G is pairwise stable if and only if G =

V (G).

The fixed-point characterization provides a useful algorithm for checking whether G is pair-

wise stable. General conditions for the existence of a pairwise stable network are given in

Jackson and Watts (2001) and Hellmann (2013). Sheng (2018) shows by example that if

Assumption 2 does not hold, then there are cases where no pairwise stable network exists.

A sufficient condition for the existence of a pairwise stable network with non-transferable

utility is that Assumption 2 holds.

Existence of an Equilibrium. Let Assumption 2 hold. For all x ∈ X , ε ∈ E, there exists

at least one pairwise stable network.

Under monotonicity, the set of pairwise stable equilibria belong to a lattice.

Set of Equilibria. Let Assumption 2 hold. Given x, ε, there exists networks G(x, ε, θ) and

G(x, ε, θ) such that:

1. G(x, ε, θ) and G(x, ε, θ) are pairwise stable; and

2. If G is pairwise stable, then G(x, ε, θ) ≤ G ≤ G(x, ε, θ).

I define any network that belongs to the equilibria lattice to be admissible.

Definition 5 (Admissible Set of Networks, Pairwise Stable Set of Network). Let Gθ(x, ε)
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denote the Admissible Set of Networks :

Gθ(x, ε) ≡ {G ∈ G : G(x, ε, θ) ≤ G ≤ G(x, ε, θ)},

Similarly, let Gps
θ (x, ε) denote the Pairwise Set of Stable Networks :

Gps
θ (x, ε) ≡ {G ∈ G : G is pairwise stable}.

As the following proposition shows, the lattice Gθ(x, ε) is very quick to compute while com-

putation of Gps
θ (x, ε) is infeasible. Typically not all networks in Gθ(x, ε) are pairwise stable.

Hence, to compute Gps
θ (x, ε) I need to evaluate V (G) for all networks G in the admissible

lattice. If G(x, ε, θ) and G(x, ε, θ) differ by k elements, then this requires 2k evaluations of

V (G). This is infeasible even for relatively small values of k.

Proposition 4. The admissible set of networks Gθ(x, ε) can be computed in no more than
n(n−1)

2
− n+ 1 evaluations of V (·).

The proof of Proposition 4 also provides a constructive way of computing the lattice. In

particular, the lattice can be computed by iteratively applying V (·) to the network of zeros

and ones.

Propositions 1 and 4 as well as the results in this section play an important role in iden-

tification of the bounds on the statistics, discussed further in Section 5.2. To understand

how, consider the case where we have a candidate value for θ and suppose that all relevant

characteristics of network-formation are observed by the researcher. I have shown that all

networks belong to an admissible lattice Gθ(x), which, in this case, depend only on observed

characteristics x. The lattice Gθ(x) can be feasibly computed and, provided the model is

correctly specified, must contain the observed network Gn̄. The aforementioned results can

then be applied to obtain bounds on a network statistic such as KBC, which is what I set

out to achieve. There are two issues with this thought experiment. First, there are typically

unobserved characteristics ε that affect the admissible lattice Gθ(x, ε). This is resolved by

taking expectations and integrating out the unobserved taste shocks. Second, I do not have

a candidate value for θ. I use the observed network data and an identification strategy

discussed in the next section to provide a set of candidate values for the network-formation

parameter, which can then be used to bound the network statistic of interest.
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5 Identification and Estimation

I first discuss identification of the network formation model. Identification is challenging due

to multiplicity of pairwise stable equilibria – typically the admissible lattice contains more

than one network |Gθ(x, ε)| > 1. If there were a single pairwise stable network, then the

network formation model would yield a single model implied distribution for the network G,

and one would be able to learn θ by matching the observed distribution P (G = G0|x) with

the one implied by the model for all G0 ∈ G.15 Due to multiplicity of equilibria, however, the

model implies multiple distributions for the network. This identification problem is further

aggravated by the assumption that the networks are only partially observed. That is, the data

only reveals information about the distribution over partially observed networks P (Gn̄ =

Gn̄0 |x). These data limitations and multiplicity of equilibria result in a set identification.16

I show two theoretical results in Section 5.1. First, I show how to obtain the sharp iden-

tified region HP [θ]. This set includes all network-formation parameters θ such that the

data-implied distribution P (Gn̄ = Gn̄0 |x) is consistent with one of the multiple distributions

implied by the model. The sharp identified region, however, cannot be feasibly computed.

I propose an outer region OP [θ] that contains HP [θ], which can be computed by only con-

sidering subnetworks of Gn̄0 . By restricting the size of the subnetwork, the outer region

can be feasibly computed and remains informative about the underlying parameters of the

network-formation model. In Section 5.2, I show how to augment OP [θ] with bounds on

the network statistic implied by Lemma 1 to obtain a joint outer region OP [θ, βθ] for both

the network-formation parameter and the network statistic of interest, where βθ = Eθ(d(G))

(the expectation is taken with respect to one of the multiple distributions for G).

5.1 Identification: The Network-Formation Model

Identification in networks with complete information and externalities is both data intensive

and computationally difficult. The sharp identified region, HP [θ], is defined by moment

inequalities – functions that are less than or equal to zero for θ ∈ HP [θ]. The sharp identified

15In terms of notation, P (·) is the probability measure and capital bold face letters indicate random
variables, such as G and X. Realized values for the network are capital non-boldface letters such as G.
Realized values for covariates are given by lower-case bold face x.

16There is an additional concern that the frequency estimator for P (Gn̄ = Gn̄
0 |x) is not precise unless

T , the number of observed networks, is very large. The reason for this is that the space of networks G
is very large, and so the likelihood of observing the exact same network-configuration twice is very small.
My identification strategy relies on subcomponents of the network, which are precisely estimated even for
relatively small values of T .
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region requires evaluating O(22
n(n−1)

2 ) moment inequalities, which is not computationally

feasible. In light of this challenge, I use a subnetwork identification strategy similar to

Sheng (2018). The idea is to derive moment inequalities defined over small subnetworks of

the observed network. These moment inequalities define an outer region for the network-

formation parameters OP [θ]. This strategy resolves the computational challenge, since the

number of moment inequalities implied by subnetworks is equal to 2
∑q

m=1 2
m(m−1)

2 . The

integer q is chosen by the researcher to control the computational burden of the problem

and is typically set to a number less than six. Formally, a subnetwork is defined as follows.

Definition 6 (Subnetwork As and Complement Subnetwork A−s). Let s ⊂ n be a subset of

the population set of individuals. The Subnetwork denoted As represents all links between

individuals in s with other individuals in s. The Complement Subnetwork denoted A−s

represents all other links in the network. That is, A−s contains all undirected links between

individuals in n − s with individuals in n. The Subnetwork and Complement Subnetwork

fully characterize G = (As, A−s).

The dark shaded area in Figure F2a displays a subnetwork As. I choose As so that its links

are contained in the observed part of the network Gn̄. I select any set s ⊂ n in the case

of complete survey data. The striped area in Figure F2b is the complement subnetwork

and this includes all links between individuals not in s. See Example C3 for a matrix

representation of a subnetwork. I derive bounds on the joint distribution of a subnetwork

As and the characteristics of the individuals within the subnetwork, xs. For that, I require

the theoretical distribution of (As,xs).

Proposition 5. The distribution of (As,xs) is given by

P (As = As,X = xs; θ) =
∑
x−s

∫ [ ∑
A−s∈G−s

ψ(G = (As, A−s)|x, ε; θ)

]
dFε(ε)P (X−s = x−s).

In Proposition 5, I integrate out characteristics of individuals not in the subnetwork x−s.

Moving in, I take expectations with respect to unobservable preference shocks ε. Finally,

inside the square brackets is the probability that (As, A−s) forms conditional on x and ε.

Because the model admits multiple equilibria, I require a rule that selects which network

forms in equilibrium. The term ψ(G = (As, A−s)|x, ε; θ) is the network selection mechanism

that determines with what probability (As, A−s) occurs in equilibrium. The selection mech-
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anism is formally defined below. It is equal to one if G is the unique equilibrium at (x, ε; θ)

and zero if G is not in the equilibria set. Otherwise, the selection mechanism is any valid

probability measure (Tamer, 2003).

Definition 7 (Network Selection Mechanism). The Network Selection Mechanism is a mea-

surable function ψ(·|x, ε; θ) satisfying the following conditions

1. ∀G 6∈ Gps
θ (x, ε), ψ(G|x, ε; θ) = 0;

2. ∀G ∈ Gps
θ (x, ε), ψ(G|x, ε; θ) ∈ [0, 1]; and

3.
∑

G∈Gpsθ (x,ε) ψ(G|x, ε; θ) = 1.

Remark 3. The first key distinction between my approach and Sheng (2018) is that I

derive bounds on the joint distribution of (As,xs) and Sheng (2018) derives bounds for

(As,xs, Fx−s(x−s)). My method requires a moment inequality for each possible realization of

(As,xs). By limiting the size of the subnetwork I can keep the number of moment inequalities

in check. In contrast, Sheng (2018) requires a moment inequality for all combinations of

(As,xs, Fx−s(x−s)), where Fx−s(x−s) is a value for the distribution at a support point x−s.

If the support is sufficiently rich (e.g., discrete but not binary), the number of moment

inequalities implied by all combinations of (As,xs, Fx−s(x−s)) is very large even when |s| is
small. The problem persists even after using exchangeability and equivalence classes to limit

the number of moment conditions, which is discussed below. There is, however, a cost from

averaging over x−s in Proposition 5 in that we may lose information. In particular, the set

of moment inequalities for (As,xs) may be satisfied at a particular value of θ, but may fail

for those defined by (As,xs, Fx−s(x−s)).

I partition the support for ε into regions that characterize the equilibrium status of a par-

ticular subnetwork As ∈ Gs. I will use this partition to decompose the probability mass

function for each subnetwork.

Definition 8 (Region of Uniqueness, Region of Multiplicity, Region of Admissibility). De-

note Eu(As,x;θ) ⊂ E to be the Region of Uniqueness. If ε ∈ Eu(As,x;θ), then there

exists a complement subnetwork A−s with the property that (As, A−s) is a pairwise sta-

ble equilibrium. Moreover, any pairwise-stable equilibrium G has As as its subnetwork:

G = (As, A−s) for some A−s. Denote Em(As,x;θ) ⊂ E to be the Region of Multiplicity. If

ε ∈ Em(As,x;θ), then there exists a complement subnetwork A−s with the property that
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(As, A−s) is a pairwise stable equilibrium. Moreover, there exists a pairwise-stable equilib-

rium G that does not have As as its subnetwork: G = (Ãs, A−s) for some Ãs 6= As and A−s.

Denote Ea(As,x;θ) ⊂ E to be the Region of Admissibility. If ε ∈ Ea(As,x;θ), then there

exists A−s such that (As, A−s) ∈ Gθ(x, ε), i.e., (As, A−s) belongs to the admissible lattice.

Using these definitions, I decompose the probability mass function for the subnetwork into

two terms.

P (As =As,X = xs; θ)

=
∑
x−s

[ ∫
1[ε ∈ Eu(As,x;θ)]dFε(ε)

+

∫
1[ε ∈ Em(As,x;θ)]

∑
A−s∈G−s

ψ(G = (As, A−s)|x, ε; θ)dFε(ε)
]
P (X = x),

where 1[·] is the indicator function. The first term involving 1[ε ∈ Eu(As,x;θ)] is the

integral over the region where the subnetwork is unique. The summation
∑

A−s∈G−s ψ(G =

(As, A−s)|x, ε; θ) drops out of the first term as it is equal to one – the selection mechanism

picks a network (As, A−s) with As as its subnetwork almost surely. The second term involving

1[ε ∈ Em(As,x;θ)] is the integral over the region where the subnetwork is not unique.17 The

selection mechanism is a measurable function, thus the following bounds are satisfied

0 ≤
∑

A−s∈G−s

ψ(G = (As, A−s)|x, ε; θ) ≤
∑
G∈G

ψ(G = G|x, ε; θ) = 1.

Therefore, we can set
∑

A−s∈G−s ψ(G = (As, A−s)|x, ε; θ) ∈ {0, 1} in Equation ?? to obtain

bounds on the probability mass function:

P (As = As,X = xs; θ) ≥
∑
x−s

∫
1[ε ∈ Eu(As,x;θ)]dFε(ε)P (X−s = x−s)

P (As = As,X = xs; θ) ≤
∑
x−s

∫
1[ε ∈ Eu(As,x;θ) ∪ Em(As,x;θ)]dFε(ε)P (X−s = x−s).

Feasibly computing these bounds is an important consideration as I need to augment this

with moment inequalities implied by the network statistic and construct projected confidence

intervals. Checking whether ε ∈ Eu(As,x;θ) ∪ Em(As,x;θ) is computationally costly and

must be repeated for each simulated draw of ε. Sheng (2018) shows that checking ε ∈
17This is a similar decomposition to the one applied to the Nash entry game (Ciliberto & Tamer, 2009)
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Eu(As,x;θ)∪ Em(As,x;θ) for the Transferable Utility case requires solving an optimization

routine. Based on times reported in Sheng (2018), it is approximately 100 to 1000 times

faster to compute the admissible lattice and work with the following bounds:

P (As = As,X = xs; θ) ≥
∑
x−s

∫
1[ε ∈ Eu(As,x;θ)]dFε(ε)P (X−s = x−s)

P (As = As,X = xs; θ) ≤
∑
x−s

∫
1[ε ∈ Ea(As,x;θ)]dFε(ε)P (X−s = x−s),

which are valid because Eu(As,x;θ)∪ Em(As,x;θ) ⊂ Ea(As,x;θ). To that end, I define the

following moment inequality functions:

m̃1(As,xs; θ) ≡ −P (As = As,X = xs) +
∑
x−s

∫
1[ε ∈ Eu(As,x;θ)]dFε(ε)P (X−s = x−s)

m̃2(As,xs; θ) ≡ P (As = As,X = xs)−
∑
x−s

∫
1[ε ∈ Ea(As,x;θ)]dFε(ε)P (X−s = x−s).

These moment functions satisfy m̃j(A
s,xs; θ) ≤ 0 for all θ ∈ HP [θ], where HP [θ] is the

sharp identified region for θ. Hence, these moment inequality functions define a valid outer

region. However, even for small subnetworks the number of moment inequalities can be quite

large. One way to reduce the number of moment inequalities is to aggregate subnetworks

into isomorphic equivalence classes. Two subnetworks (As,xs) and (Ãs, x̃s) are in the same

equivalence class if there is a permutation τ(·) such that (As,xs) = (Ãτ(s), x̃τ(s)). Two

moment inequalities are required for each equivalence class, which dramatically reduces the

number of moment inequalities defining the outer region. I further reduce the computational

complexity by summing over equivalence classes of x−s. If the covariate is binary and

univariate, it is sufficient to count the number of cases such that xi = 1 for i ∈ n − s.

Denote the equivalence class of (As,xs) to be C(As,xs). The moment inequalities that I

work with are the following:

m1(As,xs; θ)

≡ −P ((As,Xs) ∈ C(As,xs)) +
∑
C(x−s)

∫
1[ε ∈ Eu(As,x;θ)]dFε(ε)P (X−s ∈ C(x−s))

m2(As,xs; θ)

≡ P ((As,Xs) ∈ C(As,xs))−
∑
C(x−s)

∫
1[ε ∈ Ea(As,x;θ)]dFε(ε)P (X−s ∈ C(x−s)). (3)
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This aggregation can, in some cases, result in a loss of information. That is, the moment

inequalities m̃j(A
s,xs; θ) ≤ 0 can be violated for some θ, but the corresponding moment

inequalities mj(A
s,xs; θ) ≤ 0 might hold. Provided the primitives of the utility function

and the selection mechanism satisfy interchangeability (de Finetti, 1929; Chernoff & Te-

icher, 1958; Kallenberg, 2006; Austin, 2008), the moment inequalities can be aggregated up

to equivalence classes without loss of information (Sheng, 2018). These interchangeability

conditions, along with a full support assumption on the preference shocks ε, imply that

these subnetwork frequency estimators are informative (i.e., bounded away from 0 and 1)

as the network grows in size (Sheng, 2018, Proposition 4.2). However, interchangeability is

restrictive and implies that the network is dense (Orbanz & Roy, 2014).

I specify below econometric and structural assumptions that I maintain for identification.

Under these assumptions as well as Assumptions 1 and 2, I display two theorems that describe

the sharp identified region and the outer region based on the above moment inequalities over

all subnetworks up to a particular size chosen by the researcher. The sharp identified region

does not require Assumption 2.

Assumption 4 (Econometric Assumptions). There is a sequence of random elements (xt, εt)

such that: (1) ∀t, xt and εt are independent, and (2) ∀i 6= j and ∀t, εijt are i.i.d., supported

on E ⊂ R, and generated from a continuously differentiable parametric distribution F (ε; θε)

that depends on the finite-dimensional parameter θε ∈ Rdim(θε); (3) x is discrete.

Assumption 5 (Structural Assumptions). Each individual i ∈ nt receives utility from a

network according to a their payoff function πi(G,x, ε; θ). Individuals simultaneously choose

friendships with complete information over (xt, εt) with the restriction that the resulting

network Gt is pairwise stable.

Remark 4. The assumption that x is discrete is non-restrictive, as one can discretize a

continuous variable. Sheng (2018) discuses the continuous case. For exposition I discuss the

discrete case only.

Theorem 1 (Sharp Identified Region for Network Formation Parameter). Let Assumptions

1, 4, and 5 hold. Define

Gpsθ (x, ε, n̄) = {Gn̄ ∈ G : ∃G−n̄ s.t. (Gn̄, G−n̄) ∈ Gpsθ (x, ε))}
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That is, Gpsθ (x, ε, n̄) is a random set that consists of all partially observed networks Gn̄ that

can be completed by a pairwise stable network. The sharp identification region for θ is given

by

HP [θ] = {θ ∈ Θ : P (Gn̄ ∈ K|x) ≤ T Gpsθ (x,ε,n̄)(K;Fε) ∀K ⊂ Gn̄,x− a.s},

where T Gpsθ (x,ε,n̄)(K;Fε) ≡ P ({Gpsθ (x, ε, n̄) ∩ K 6= ∅}, ε ∼ Fε) is the capacity functional.

Theorem 1 characterizes the sharp identification region in a similar way to Molinari (2019,

Theorem SIR-3.8). In contrast to what I do, Molinari assumes the researcher observes

the complete network. The key difference is the information revealed to the researcher

and the random set governing Artstein’s inequality (Artstein, 1983). While I do maintain

Assumption 2 throughout this paper, Theorem 1 does not technically require it. Suppose

that Assumption 2 did not hold so that marginal utility is not monotonically increasing in

the network. It is possible that there does not exist an equilibrium for some value of θ in

which case Gps
θ (x, ε) = ∅ and T Gpsθ (x,ε,n̄)(K;Fε) = 0. The sharp identified region in this case

would exclude these values of θ.

The sharp identified region cannot be feasibly computed as it requires enumerating a doubly

exponential number of compact sets. It is, however, useful for establishing an outer region

that is computationally feasible. The next Theorem displays an outer region OP [θ] based on

subnetwork moment inequalities that contains the set HP [θ].

Theorem 2 (Outer Region for Network Formation Parameter). Fix an integer q ≤ |n̄| and

suppose that Assumptions 1, 2, 4, and 5 hold. Define

OP [θ] ≡ {θ ∈ Θ : mj(A
s,xs; θ) ≤ 0 j = 1, 2 ∀As,xs s.t. |s| ≤ q, s ⊂ n̄} .

where m1(As,xs; θ) and m2(As,xs; θ) are given in Equation (3). Then HP [θ] ⊆ OP [θ].

I compute the outer region OP [θ] using simulated methods, which are discussed in detail

in Appendix A. Next, I show how to use Propositions 1, 2, and 3 to identify a wide class

of centrality measures, including Katz-Bonacich Centrality, diffusion centrality, and decay

centrality. These results naturally extend to identifying endogenous outcomes of a game

played on the network, such as the peer effects game.
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5.2 Identification: Network Statistics

Consider a network statistic d(G). Ideally, I would like to compute the value of d(·) for one

of the observed networks Gn̄. However, computing d(G) typically requires the full network.18

Using the model, I can take expectations with respect to d(G) conditional on Gn̄. Due to

multiplicity of equilibria, however, the model implies multiple distributions for the network.

Therefore, there is a collection of values of β(Gn̄) ≡ E(d(G)|Gn̄; θ) that are consistent with

the model. Using Propositions 1, 2, and 3, I can bound these values to provide informative

bounds on the network statistic of interest.

A related and easier problem that I address first is obtaining bounds on the unconditional

expectation of d(G). These bounds can be applied to out-of-sample networks – networks

that I have no prior knowledge over. An out-of-sample network is, for example, a friendship

network among students in a school that I have not sampled. As another example, I can use

the out-of-sample network bounds to execute counterfactual analysis where I hypothetically

remove students from the classroom and allow the remaining students to re-optimize their

friendship network according to the model. For exposition, suppose that d(G) is monotoni-

cally increasing in the network. I will relax this assumption in the main theorem. Conditional

on x, the expected value of d(G) is given by

β ≡ Eθ(d(G)|x; θ) =

∫
ε

∑
G∈G

d(G)ψ(G = G|x, ε; θ)dFε(ε). (4)

The joint sharp identified region for (βθ, θ) includes all values given by Equation (4) for some

θ ∈ HP [θ] and for some valid network selection mechanism ψ(·|x, ε; θ).19 Formally,

HP [β, θ] ≡

{
(β, θ) ∈ B ×HP [θ] : ∃ network selection mechanism ψ(·)

s.t. β satisfies Equation (4)

}
. (5)

Applying Lemma 1, monotonically increasing network statistics are maximized by G(x, ε, θ)

18In the case of degree centrality, only the direct friends of an individual is required. With complete survey
data, the degree centrality is computable for surveyed individuals. However, this information is not available
with arbitrary random missing link data.

19This sharp identified region can also be derived from the Aumann Expectation of the random set con-
taining admissible values of d(G). The Aumann Expectation is a correspondence from a random set to a set
of values that are consistent with one of the multiple underlying distributions (Aumann, 1965; Molchanov,
2005; Molchanov & Molinari, 2018). In this case, it is easier (and isomorphic) to work with the selection
mechanism.
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on Gθ(x, ε) from which it follows that

β ≤
∫
ε

d(G(x, ε,θ))dFε(ε).

Similarly, the lower bound is achieved by loading all of the selection mechanism’s mass on

G(x, ε,θ) to obtain

β ≥
∫
ε

d(G(x, ε,θ))dFε(ε).

Define the following moment inequalities:

m3(x; β, θ) ≡ −β +

∫
ε

d(G(x, ε,θ))dFε(ε) (6)

m4(x; β, θ) ≡ β −
∫
ε

d(G(x, ε,θ))dFε(ε).

For non-monotone statistics, the moment inequalities are replaced by∫
ε

d(G(x, ε,θ), G(x, ε,θ))dFε(ε) and

∫
ε

d(G(x, ε,θ), G(x, ε,θ))dFε(ε),

where d(·, ·) and d(·, ·) are bounds on Problem (1). The next theorem displays the outer

region for (β, θ) for an out-of-sample network G that I have no information on.

Theorem 3 (Outer Region for a Network Statistic). Fix an integer q ≤ |n̄| and suppose

that Assumptions 1, 2, 4, and 5. Let d(G) be a network statistic. Assume that there are

mappings d : G × G → Rn and d : G × G → Rn such that

d(G,G) ≤ min
G∈L(G,G)

d(G) and max
G∈L(G,G)

d(G) ≤ d(G,G)

for all network lattices L(G,G) = {G : G ≤ G ≤ G}. Define

OP [β, θ] ≡

{
β ∈ B, θ ∈ Θ : mj(A

s,xs; θ) ≤ 0 j = 1, 2 ∀As,xs s.t. |s| ≤ q, s ⊂ n̄
mj(x; β, θ) ≤ 0, j = 3, 4 x− a.s.

}
,
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where

m3(x; β, θ) ≡ −β +

∫
ε

d(G(x, ε,θ), G(x, ε,θ))dFε(ε)

m4(x; β, θ) ≡ β −
∫
ε

d(G(x, ε,θ), G(x, ε,θ))dFε(ε).

Then HP [β, θ] ⊆ OP [β, θ].

Remark 5. The above theorem is useful for analyzing policy interventions where we do

not observe the network. Consider for example a policy where resources are injected into

all schools in a country, but the researcher lacks network data on all of the schools. The

researcher has, however, estimated the network-formation model using network data from

a sample of students from a sample of schools. Extrapolating the model to non-sampled

schools, I can obtain bounds on a centrality measures based on observed characteristics

of the students. The centrality measure can then be used to infer how the policy affects

outcomes on the unobserved network.

I now turn to obtaining bounds on a network statistic for an in-sample network that is

partially observed. Conditional on the realized network Gn̄, I require that (Gn̄, G−n̄) is

pairwise stable. This is true if only if the subgame played on links in G−n̄ is pairwise stable

conditional on Gn̄. That is, for all links with G−n̄ij = 1, it must be the case that the marginal

utility over (Gn̄, G−n̄) is positive for both i and j. If G−n̄ij = 0, then either i has negative

marginal utility over j or j has negative marginal utility over i. The sharp identified region

HP [β(Gn̄), θ] is analogous to the one displayed in Equation (5) with the restriction that

β(Gn̄) satisfies

β(Gn̄) =

∫
ε

∑
G−n̄

d(G)ψ(G = (Gn̄, G−n̄)|Gn̄,x, ε; θ)dFε(ε).

I apply Topkis (1978) to this subgame to obtain the conditional admissible lattice denoted

Gθ(x, Gn̄, ε) = {G : H(x, Gn̄, ε; θ) ≤ G ≤ H(x, Gn̄, ε; θ)},
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where H(x, Gn̄, ε; θ) and H(x, Gn̄, ε; θ) are obtained by applying the modified mapping

Ṽij(G
n̄, G−n̄) =

Gn̄ij if ij ∈ Gn̄

Vij(G
n̄, G−n̄) if ij ∈ G−n̄

to (G−n̄,0−n̄) and (G−n̄,1−n̄), where 0−n̄ and 1−n̄ are the zero and one submatrices with

dimension equal to G−n̄. From this, I obtain the following bounds on a monotonically

increasing network statistic d(G):

β(Gn̄) ≤
∫
ε

d(H(x, Gn̄, ε; θ))dFε(ε) (7)

β(Gn̄) ≥
∫
ε

d(H(x, Gn̄, ε; θ))dFε(ε).

Consequently, I obtain an outer region similar to the one characterized in Theorem 3.

Theorem 4 (Outer Region for a Network Statistic). Fix an integer q ≤ |n̄| and suppose

that Assumptions 1, 2, 4, 5 hold. Let d(G) be a network statistic. Suppose that a partially

observed network Gn̄ is specified. Assume that there are mappings d : G × G → Rn and

d : G × G → Rn such that

d(G,G) ≤ min
G∈L(G,G)

d(G) and max
G∈L(G,G)

d(G) ≤ d(G,G)

for all network lattices L(G,G) = {G : G ≤ G ≤ G}. Define

OP [β(Gn̄), θ]

≡

{
β(Gn̄) ∈ B, θ ∈ Θ : mj(A

s,xs; θ) ≤ 0 j = 1, 2 ∀As,xs s.t. |s| ≤ A, s ⊂ n̄
mj(x; β(Gn̄), θ) ≤ 0, j = 3, 4 x− a.s.

}
,

where

m3(x; β(Gn̄), θ) ≡ −β(Gn̄) +

∫
ε

d(H(x, Gn̄, ε; θ), H(x, Gn̄, ε; θ))dFε(ε)

m4(x; β(Gn̄), θ) ≡ β(Gn̄)−
∫
ε

d(H(x, Gn̄, ε; θ), H(x, Gn̄, ε; θ))dFε(ε).

Then HP [β(Gn̄), θ] ⊂ OP [β(Gn̄), θ].

Theorem 4 is the key result of my paper. It provides us with a joint set of parameters
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for both the network statistic of interest as well as the network formation parameters that

are consistent with the partially observed network Gn̄. I can leverage this outer region

to answer many interesting questions, including: who is the most influential player, who

should we optimally target to spread information about a new vaccine, and who is the key

player in a criminal network? I use calibrated projection Kaido, Molinari, and Stoye (2019)

as implemented by Kaido, Molinari, Stoye, and Thirkettle (2017) to construct confidence

intervals. I conclude with a simulation study to show the applicability of my framework.

6 Application

I apply my framework to the Katz-Bonacich Centrality. I can also apply my framework to

other centrality measures that are monotonic in the network, including Decay Centrality

and Diffusion Centrality. Decay and Diffusion Centralities are especially relevant as they

describe how fast information about a new microfinance program spreads through remote

villages in India (Banerjee et al., 2013, 2014). I specify the marginal utility of links as a

linear function of three terms:

Πij(G,x, ε; θ) =θ0|xi − xj|+ γ1
1

n− 1

∑
k∈n:k 6=i

Gjk + γ2
1

n− 2

∑
k∈n:k 6=i

GikGjk + εij,

The first term θ0|xi−xj| allows for homophily. This is the concept that individuals are more

likely to form friends with individuals who have similar characteristics. I set θ0 < 0 so that

if xi 6= xj, then the marginal utility over the link is smaller and hence a friendship is less

likely to occur. I assume xi is i.i.d, binary (e.g., the individual’s sex), and P (xi = 1) = 0.5.

This model allows for two channels of spillovers: popularity spillover γ1
1

n−1

∑
k∈n:k 6=iGjk and

mutual friend spillover γ2
1

n−2

∑
k∈n:k 6=iGikGjk.

20 I also assume that the additive error εij is

distributed i.i.d N(0, 1) with εij = εji, and εij |= xk for all i, j, k. I report bounds on the

unweighted Katz-Bonacich centrality, d(G) = (I − λG)−11. The decay parameter λ is in

[0, λ̄], where λ̄ is selected to ensure that the network statistic is well defined.

I first restrict the model to one spillover with no homophily in order to understand the

performance of the model and the variation required to pin down the set of structural pa-

rameters. I show that this parsimonious model is nearly point identified and provides tight

bounds on KBC.

20The simulations in Sheng (2018) is a variation of the model I present. In her paper, γ1 = 0 (i.e., no
popularity spillovers) and utility is transferable.
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6.1 Popularity Spillover Only

To understand the performance of the model, I first shut down observed characteristics and

set θ0 = 0 and γ2 = 0. I assume that this is known to the researcher. Marginal utility is

given by

Πij(G, ε; θ) =γ1
1

n− 1

∑
k∈n:k 6=i

Gjk + εij. (8)

I first report the size and density of the admissible lattice. I vary the size of the spillover

γ1 ∈ [0, 3] and set the population size equal to n = 50. Figure D1c displays the expected

fraction of links in G (solid line) and G (dotted line). The vertical distance between G and

G is proportional to the size of the admissible lattice and counts the fractional difference in

the number of links between G and G. On average, the lattice is narrow: for a fixed value of

γ1, there is little variation in the overall density of the equilibrium network. Increasing the

size of the spillover results in a denser network. As γ1 approaches 3, the network becomes

a complete network where all individuals are friends. Next, I increase the population size

to n = 100 in Figure D1d. For every value of γ1, the lattice becomes more dense. The

intuition here is that individuals now have a larger set of potential friends and experience

larger spillovers. In addition, the difference in the density between G and G also declines.

What could be happening here is that the lattice is converging to the complete network as

n increases.

Table E1 reports the outer region for γ1. The first column reports the identified region using

subnetworks up to size q = 2. The second column sets q = 3 and the third sets q = 4. The

rows report results varying the number of individuals in the network n ∈ {50, 100} and the

true value for the popularity spiller γ1 ∈ {0, 0.5, 1}. The model is effectively point identified

when γ1 = 0 and is partially identified with γ1 > 0. In all cases the identified set is narrow.

For example, the identified set is [0.985, 1.018] when γ1 = 1. As expected, the identified

set tightens as I increase the maximum size of the subnetwork from q = 2 to q = 4. The

identified set is tighter when the population size increases to n = 100 as well. Reflecting on

Figure D1d, this makes sense as the admissible lattice tightens when n increases, implying

that bounds on the distribution of subnetworks also tighten.

Table E3 reports the outer region on the average level of Katz-Bonacich Centrality using

Theorem 4. I vary both the size of the popularity spillover γ1 as well as the decay parameter

λ. I report bounds using maximum subnetwork sizes ranging from q = 2 to q = 4. I
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also report the true average level of KBC and the worst-case bounds. When the popularity

spillovers are zero (i.e., γ1 = 0) the model is point identified and equivalent to an exponential

random graph model. In this case, the outer region on average KBC is a single point and

is equal to the true value of KBC, while worst-case bounds are fairly wide. Increasing the

size of the popularity spillovers result in wider bounds on average KBC, but remain tight.

In the least preferable case, the worst-case bounds are [2.85, 5.53], which are 12 times wider

than the bounds that my model predicts, [4.02, 4.24]. Using my framework, therefore, I can

obtain informative bounds on the network statistic of interest.

I also report results for the case where only the mutual-friend spillover is present, see Ap-

pendix E and D. These are largely in line with what I find for the model with only popularity

spillovers. I next consider the model with two channels of spillovers.

6.2 Both Spillovers

Suppose now that marginal utility contains both channels of spillovers, but no homophily:

Πij(G, ε, θ) =γ1
1

n− 1

∑
k∈n:k 6=i

Gjk + γ2
1

n− 2

∑
k∈n:k 6=i

GikGjk + εij.

This is a DGP that has not been explored in previous simulation studies – simulation studies

in prior literature restrict attention to models with one spillover. Figure D2 reports the

density and the size of the admissible lattice where (γ1, γ2) ∈ [0, 2] × [0, 2]. The first two

panels display the fraction of links in G and G, respectively. Similar to what I find for the

single-spillover model, the density approaches 1 as the size of the spillovers increase. The

third panel displays the fractional difference between G and G. The maximal difference is

only 1%.

Tables E4 and E5 report the projected outer region for (γ1, γ2). In contrast to the previ-

ous results, the outer region is wide, especially for small subnetworks. For example, when

(γ1, γ2) = (0.5, 0.5) and setting q = 2, I obtain projected outer regions equal to [0, 0.9] for γ1

and [0, 1.16] for γ2. The size of the outer region rapidly contracts with the maximum sub-

network size. One particularly remarkable case is (γ1, γ2) = (0, 0.5) with q = 4, where the

projected outer regions are [0, 0.03] and [0.44, 0.50] for γ1 and γ2, respectively. In reflection

of Figure D2 this is not surprising. I only find a 1% difference in the density of G and G,

indicating that the theoretical sharp identified set based on the full network is narrow. I lose

information by only considering subnetworks with restricted size. Since my model remains
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tractable for relativity large subnetwork sizes, I am able to feasibly obtain tighter bounds

on this particular model.

While the bounds on the preference parameters are wide, the bound on KBC is narrow. Table

E6 and E7 reports identified regions for KBC when I allow for two channels of spillovers in

the network-formation process. I set λ = 0.01 in Table E6 and λ = 0.02 in Table E7. I

vary (γ1, γ2) ∈ {0, 0.25, 0.5} × {0, 0.25, 0.5}. Despite the fact that the identified region for

the preference parameters are typically wide and seemingly uninformative, I obtain precise

bounds on network statistic of interest. The outer region on average KBC is [3.725, 3.792]

when (γ1, γ2) = (0.5, 0.5) and λ = 0.02. In contrast, the worst-case bounds are [2.376, 5.328].

As a result my bounds are 44 times narrower than the worst-case bounds. Overall, I obtain

informative bounds on KBC.

7 Conclusion

Social network data with links missing at random is very common in the social sciences.

Applied researchers are often faced with the dilemma of estimating a network statistic when

the social network is partially observed and formed endogenously. With cross-sectional

network data, the literature either: (1) ignores the fact that the network is partially observed

in which case the reported network statistic is incorrect; or (2) the missing links are filled

in with an exogenous network-formation process. However, in practice, social networks are

formed strategically. For example, students in a classroom choose their friends based on

the popularity of others. I provide a framework to obtain informative bounds on network

statistics in a partially observed network whose formation I explicitly model. I assume

that individuals endogenously form links according to the standard social-network formation

model of complete information and pairwise stability. I assume that the researcher has access

to cross-sectional data from multiple partially observed networks, where the links are missing

at random. I obtain a computationally tractable method to obtain bounds on both the

preferences determining network formation processes and network statistics. In a simulation

study on the Katz-Bonacich centrality measure, I dramatically reduce the worst-case bounds,

which do not use the network formation model. I obtain from my procedure bounds that

are 12 times narrower than the worst-case bounds.
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Appendices

A Outer Region Computation

This section details how to construct the outer identified region for the network-formation pa-

rameter, OP [θ], and the joint outer identified region for the target network statistic OP [βθ, θ].

I detail how to construct equivalence classes and also how to simulate the model-implied

probability a subnetwork forms.

A.1 Network Formation Moment Inequalities

Recall that the moment inequalities for the network-formation model that I work with are:

m1(As,xs; θ) ≡ −P ((As,Xs) ∈ C(As,xs)) +
∑
C(x−s)

∫
ε∈Eu(As,x;θ)

dFε(ε)P (X−s ∈ C(x−s))

m2(As,xs; θ) ≡ P ((As,X) ∈ C(As,xs))−
∑
C(x−s)

∫
ε∈Ea(As,x;θ)

dFε(ε)P (X−s ∈ C(x−s)).

(9)

The first term in Equation (9) is estimated from data:

P̂ (As ∈ C(As,xs)) =
1

T

T∑
t=1

1(As ∼ Ast ,x ∼ xst ),

where (As ∼ Ast ,x
s ∼ xst ) denotes an isomorphism. That is, there exists a permutation of s,

say τ(s), such that As = G
τ(s)
t and xs = x

τ(s)
t . The first computational problem is checking

for isomorphisms, which is expensive. I elect to enumerate all possible values of (As,xs) and

construct all equivalence classes outside of the main optimization program. This is feasible

provided that I restrict |s| to less than or equal to six. I use the isisomorphic function

from the Graph and Network Algorithm package in MatLab’s base toolbox to check whether

two colored networks (As,xs) and (Ãs, x̃s) are isomorphic. I compare the realized value of

(Ast ,x
s
t ) to the enumerated list of colored networks to obtain its equivalence class number.

Last, P̂ (As ∈ C(As,xs)) is computed by summing over all realized networks belonging to

class C(As,xs).21

21An alternative method is to check whether (As
t ,x

s
t ) is isomorphic to the representative colored network

in each equivalence class. This alternate method does not work for computing isomorphic dominance, which
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The second term in Equation (9) is computed by simulation and from data. The term

P (Xs ∈ C(x)) is estimated from the data. I maintain the assumption that xi is indepen-

dent of xj, hence P (X−s = x−s) =
∏

i∈n−sP (xi). In the case of binary data C(x−s) is

characterized by the number of instances that xi = 1. Let n1(x−s) =
∑

i∈n−s 1(xi = 1).

Then

P (X−s ∈ C(x−s)) = pn1(x−s)(1− p)n−|s|−n1(x−s),

where p is the probability that xi = 1. The sum over equivalence classes is then equivalent

to summing over all possible values for n1(x−s), i.e., 1 to n−|s|. In a richer setting where x

is discrete I can simulate values of x−s from its estimated distribution rather than summing

up over all possible values.

The heart of the problem is computing
∫
1[ε ∈ Eu(As,x;θ)]dFε(ε) and

∫
1[ε ∈ Ea(As,x;θ)]dFε(ε).

I simulate these integrals. First, draw S realizations of εs from Fε(ε; θε) using an impor-

tance sampler or other simulation bias-reducing method. Next, given a pre-defined sub-

network s, covariate x, and parameter θ, I compute the lattice of admissible networks

using Algorithm 1 below, which is based on Proposition 4 and similar to the algorithm

in Jia (2008) and Miyauchi (2016). Define I1(As,x; θ) ≡
∫
1[ε ∈ Eu(As,x;θ)]dFε(ε) and

I2(As,x; θ) ≡
∫
1[ε ∈ Ea(As,x;θ)]dFε(ε). The respective simulated integrals are:

Î1(As,x; θ) =
1

S

S∑
s=1

1(Gs(x, εs, θ) ∼ As ∼ G
s
(x, εs, θ))

Î2(As,x; θ) =
1

S

S∑
s=1

1(Gs(x, εs, θ) � As � G
s
(x, εs, θ)),

where the notation Gs(x, εs, θ) � As means that there exists a permutation of s, say τ(s),

such that Gτ(s)(x, εs, θ) ≤ As. I define this condition to be isomorphic dominance.

Unfortunately there does not exist a function that checks for isomorphic dominance. I use

the isomorphic classes and the enumerated list of networks to check whether two networks

are isomorphically dominated. The procedure works as follows. Take two equivalence classes

C(Ãs) and C(As). For all subnetworks As ∈ C(As), I check whether Ãs ≤ As. If there

exists a As ∈ C(As) such that Ãs ≤ As, then all subnetworks in the equivalence class

C(Ãs) are isomorphically dominated by those in As ∈ C(As). I execute this procedure

outside of the main algorithm and record in a binary, square matrix with dimension equal

to the number of equivalence classes. Using this binary matrix, I can evaluate the term

I will discuss shortly.
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1(Gs(x, εs, θ) � As � G
s
(x, εs, θ)) inside the main algorithm.

The following algorithm demonstrates how to compute the equilibria lattice.

Algorithm 1 (Admissible Lattice). The input is (x, ε, θ) and the output is G(x, ε; θ) and

G(x, ε; θ). Execute the following steps.

0. Initialize: Create the n× n matrices G0 and G1 as defined in the proof of Proposition

4. Define the function

Vij(G) ≡ 1[Πij(G,x, ε; θ) ≥ 0]1[Πji(G,x, ε; θ) ≥ 0].

Set k = 1. Set V 0
ij(G) ≡ G0.

1. Compute V k
ij (G0) ≡ V (V k−1

ij (G0)).

2. If V k
ij (G0) = V k−1

ij (G0), set

G(x, ε; θ) = V k
ij (G0),

set k = 1, and go to step 3. Otherwise, set k = k + 1 and go to step 1.

3. Compute V k
ij (G1) ≡ V (V k−1

ij (G1)).

4. If V k
ij (G1) = V k−1

ij (G1), set

G(x, ε; θ) = V k
ij (G1)),

and return G(x, ε; θ) and G(x, ε; θ). Otherwise, set k = k + 1 and go to step 3.

A.2 Smoothing Moments

The simulated moments are stepwise and hence the gradient of the moment functions are

locally flat. There are many ways of smoothing this problem. I elect to use Kriging. Kriging

is an interpolation method that smooths a function f : RQ → RW using a Gaussian process

governed by prior covariances. I use the DACE MatLab package for this purpose. I first

draw M structural network parameters using Latin hypercube sampling. I compute the

moment functions using the simulated methods described above for each of these M points.

The moments are interpolated using Kriging. Finally, I solve min/maxθ θj subject to the

interpolated moment inequalities. The interpolated moment inequalities are smooth and this

problem can be solved using any standard gradient based algorithm such as SQP. The same

Kriging procedure can be applied to get calibrated projected confidence intervals.
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B Theorems and Proofs

Proof of Lemma 1. I argue that the solution to

min
G∈L(G,G)

d(G)

is equal to G when d(G) is monotonically increasing in G. The remaining three cases follow

a similar logic. Pick any G ∈ L(G,G). By the definition of the lattice, G ≤ G. Moreover,

d(G) ≤ d(G) by the definition of a monotonically increasing statistic. Since G is chosen

arbitrarily from L(G,G) and G ∈ L(G,G) it follows that G = arg minG∈L(G,G) d(G), as

required.

The following Lemma is useful for showing Propositions 1 and 2.

Lemma B1. Consider the two binary networks G and G′. If G ≤ G′, then Gk ≤ G′k for all

k.

Proof. I show this by mathematical induction. For the first step

(G2)ij =
n∑
k=1

GikGkj

≤
n∑
k=1

G′ikG
′
kj

= (G′2)ij.

So the base step holds. Now suppose that Gk ≤ G′k holds true and consider the ijth element

of Gk+1

(Gk+1)ij =
n∑
k=1

Gik(G
k)kj

≤
n∑
k=1

G′ik(G
′k)kj

= (G′k+1)ij.

Therefore, the claim holds by mathematical induction.
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Proof of Proposition 1. I show that the centrality measures in Examples 2 - 7 are monotone

in the network.

Monotonic Katz-Bonacich Centrality: dkbc(G;w, λ) ≡
∑∞

k=0 λ
kGkw. Consider the case

when w ≥ 0. Pick any G,G′ such that G ≤ G′ and consider the ith element of Gkw:

(Gkw)i =
n∑
j=1

(Gk)ijwj ≤
n∑
j=1

(G′k)ijwj = (G′kw)i.

The inequality follows because wj ≥ 0 for all j, G ≤ G′, and by the result in Lemma B1.

Thus, for all k, Gkw ≤ G′kw. It follows that

dkbc(G;w, λ) =
∞∑
k=0

λkGkw ≤
∞∑
k=0

λkG′kw = dkbc(G′;w, λ),

as required.

Diffusion Centrality: di(G;λ,K) =
∑K

k=1

∑n
j=1 λ

kGk
ij. This follows the same argument

for KBC – diffusion centrality is equal to a truncated KBC.

Degree Centrality: di(G) =
∑n

j=1Gij. Let G ≤ G′ and let Ni(G) = {j : Gij = 1}. It is

clear that Ni(G) ⊂ Ni(G′). Hence,

di(G) =
∑

j∈Ni(G)

Gij ≤
∑

j∈Ni(G)

Gij +
∑

j∈Ni(G′)−Ni(G)

G′ij = di(G
′).

Closeness Centrality: di(G) = n−1∑n
j=1 ρij(G)

. Recall that ρij(G) is the length of the shortest

path between individuals i and j in network G. This term does not have an analytical

expression. However, it is clear from the definition that ρij(G) ≥ ρij(G
′) if and only if

G ≤ G′ – adding links can only shorten the shortest path between individuals. Therefore

di(G) ≤ di(G
′).

Harmonic Centrality: di(G) =
∑n

j=1
n−1
ρij(G)

. This follows from the same argument for

Closeness Centrality.

Decay Centrality: di(G;λ) =
∑n−1

k=1

∑n
j=1 λ

k
1(ρij(G) = k). Consider any two networks

satisfying G ≤ G′. Suppose that λ ∈ [0, 1] and that G is fully connected. Then there is a

unique number lij such that 1(ρij(G) = lij) = 1. Adding links can only shorten the shortest

path, so there exists another unique number l′ij ≤ lij such that 1(ρij(G) = l′ij) = 1. Using
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this notation,

di(G;λ) =
n∑
j=1

λlij1(ρij(G) = lij) ≤
n∑
j=1

λl
′
ij1(ρij(G) = l′ij) = di(G

′;λ).

The inequality follows because λlij ≤ λl
′
ij when λ ∈ [0, 1]. The reverse holds true when λ > 1.

The argument is also true for non-connected networks in which case 1(ρij(G) = k) = 0 for

all k for individuals i and j in different communities.

Proof of Proposition 2. I can re-write the expression for d(G,G;λ) as follows:

d(G,G;λ) =

( ∞∑
k=0

λkGk

)
1

, . . . ,

(
∞∑
k=0

λkGk

)
n+

,

(
∞∑
k=0

λkG
k

)
n++1

, . . . ,

(
∞∑
k=0

λkG
k

)
n

 .
Consider the ith element of d(G,G;λ)w:

[d(G,G;λ)w]i

=


( ∞∑

k=0

λkGk

)
1

, . . . ,

(
∞∑
k=0

λkGk

)
n+

,

(
∞∑
k=0

λkG
k

)
n++1

, . . . ,

(
∞∑
k=0

λkG
k

)
n

w

i

=

n+∑
j=1

(
∞∑
k=0

λkGk

)
ij

wj +
n∑

j=n++1

(
∞∑
k=0

λkG
k

)
ij

wj

=

n+∑
j=1

∞∑
k=0

λk(Gk)ijwj +
n∑

j=n++1

∞∑
k=0

λk(G
k
)ijwj.

Now consider any G ∈ L(G,G). By Lemma B1, for all k: Gk ≤ Gk and by assumption

wj ≥ 0 for j ≤ n+, hence:

n+∑
j=1

∞∑
k=0

λk(Gk)ijwj ≤
n+∑
j=1

∞∑
k=0

λk(Gk)ijwj.

Similarly, since wj < 0 for j > n+

n∑
j=n++1

∞∑
k=0

λk(G
k
)ijwj ≤

n∑
j=n++1

∞∑
k=0

λk(Gk)ijwj.
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It therefore follows that

[d(G,G;λ)w]i =

n+∑
j=1

∞∑
k=0

λk(Gk)ijwj +
n∑

j=n++1

∞∑
k=0

λk(G
k
)ijwj

≤
n+∑
j=1

∞∑
k=0

λk(Gk)ijwj +
n∑

j=n++1

∞∑
k=0

λk(Gk)ijwj

= dkbc
i (G;w, λ)

Since G and i are arbitrary, it follows that [d(G,G;λ)w]i ≤ arg minG∈L(G,G) d
kbc
i (G;w, λ). A

similar argument also shows that [d(G,G;λ)w]i ≥ arg maxG∈L(G,G).

Proof of Proposition 3. This follows from the fact that dkbc
i (G;λ) and (I −λG)−1

ii are mono-

tone increasing in G.

Proof of Proposition 4. Define G0, G1 by

(G0)ij ≡ 0 ∀i, j ∈ n

(G1)ij ≡

1 ∀i 6= j

0 i = j
.

Apply the mapping V (·) to G0 k times. Under Assumption 2, V k(G0) ≤ V k+1(G0). Hence

after a finite k number of iterations we obtain V k(G0) = V k+1(G0). Note that k ≤ n(n−1)
2
−n,

since at most n(n−1)
2
− n elements of G0 can change and at least one element must change

each time V (·) is applied before a fixed point is obtained.

It remains to show that V k(G0) = G. For the purpose of obtaining a contradiction, suppose

V k(G0) 6= G. The network V k(G0) is a fixed point of the mapping V (·), so it is pairwise

stable. All pairwise stable networks belong to the admissible lattice, hence G < V k(G0).

Apply the increasing function V (·) k times to both sides of the inequality G0 ≤ G to obtain

V k(G0) ≤ V k(G) = G < V k(G0),

a contradiction. Therefore V k(G0) = G. A symmetric argument can be applied to G1 to

show that there exists a k such that V k(G1) = G.

The term k + k is bounded by n(n−1)
2
− n + 1. In the worse case scenario G = G, which

requires k =
∑

i 6=j 1(Gij = 1) applications of V (·) to G0 plus one additional application to
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ensure that fixed point is obtained, and k =
∑

i 6=j 1(Gij = 0) applications of V (·) to G1. In

this case,

k + k =
∑
i 6=j

1(Gij = 1) +
∑
i 6=j

1(Gij = 1) + 1 =
n(n− 1)

2
− n+ 1.

Formal explanation of Remark 2. Let D ≡ d(G,G;λ). The claim is that there does not

always exist a G ∈ L(G,G) such that D = (I − λG)−1, and hence the bounds given in

Theorem 2 are not necessarily sharp. For sake of argument, suppose that there did exist a

G such that D = (I − λG)−1. Then

D = (I − λG)−1 =
∞∑
k=0

λkGk ⇐⇒

I = (I − λG)D ⇐⇒

ej =

(I − λG)
(∑∞

k=0 λ
k(G)kj

)
if j ≤ n+

(I − λG)
(∑∞

k=0 λ
k(G)kj

)
else

,

where ej is the jth basis vector. Rewriting this we obtain

∞∑
k=0

λk(G)kj = ej +
∞∑
k=0

λk+1G(G)kj ∀j ≤ n+ (B.1)

∞∑
k=0

λk(G)kj = ej +
∞∑
k=0

λk+1G(G)kj ∀j > n+
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Setting G = G satisfies the first condition in Equation (B.1), since:

ej +
∞∑
k=0

λk+1G(G)kj = ej +
∞∑
k=0

λk+1G(G)kj

= ej +
∞∑
k=0

λk+1(G)k+1
j

= ej +
∞∑
k=1

λk(G)kj

=
∞∑
k=0

λk(G)kj .

Of course, G = G fails the second condition when j > n+ for cases where G 6= G. It follows

that G 6= G and G 6= G. I show that no such G exists satisfying Equation (B.1) in general.

For this purpose, maintain the following assumptions: λ > 0 and G is fully connected so

that for all i, l there exists a k such that (G
k
)il 6= 0.

Since IK know G 6= G, there exists an i and l such that 0 = Gil 6= Gil = 1. Fix any j ≤ n+

and consider ij component for the expression in Equation (B.1):

∞∑
k=0

λk(G)kj =

[
ej +

∞∑
k=0

λk+1G(G)kj

]
i

= 1(i = j) +

∞∑
k=0

λk+1
n∑

l=1

Gil(G)klj

< 1(i = j) +

∞∑
k=0

λk+1
∑
l=1

Gil(G)klj (since λ > 0, G ≤ G, Gil < Gil, and (G
k
)lj 6= 0 for some k)

=

[
ej +

∞∑
k=0

λk+1(G)k+1
j

]
i

=
∞∑
k=0

λk(G)kj .

I arrive to a contradiction and hence I conclude that there does not exist a G such that

D = (I − λG)−1 in general

Proposition B1. Consider the strategic campaign donation with peer effects model in Ex-

ample C1. Suppose that the utility of money is given by vi(s) = κ ln(s) for all legislators.
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Define mappings d : G × G → Rn and d : G × G → Rn by

d(G,G;λ, φ) =



(I − 2λφG)−1
1

...

(I − 2λφG)−1
i−1

(I − 2λφG)−1
i

(I − 2λφG)−1
i+1

...

(I − 2λφG)−1
i+1


and d(G,G;λ, φ) =



(I − 2λφG)−1
1

...

(I − 2λφG)−1
i−1

(I − 2λφG)−1
i

(I − 2λφG)−1
i+1

...

(I − 2λφG)−1
i+1.


Then

(d(G,G;λ, φ)1)iW∑
j(d(G,G;λ, φ)1)j

≤ s∗i ≤
(d(G,G;λ, φ)1)iW∑
j(d(G,G;λ, φ)1)j

Proof of Proposition B1. Let D ≡ d(G,G;λ, φ) and D ≡ d(G,G;λ, φ). The following state-

ments are equivalent.

(D1)iW∑
j(D1)j

≤ s∗i ⇐⇒

(D1)i∑
j(D1)j

≤ dkbc
i (G′; 2λφ)W∑
j d

kbc
j (G′; 2λφ)

⇐⇒

(D1)i
∑
j

dkbc
j (G′; 2λφ) ≤ dkbc

i (G′; 2λφ)
∑
j

(D1)j ⇐⇒

(D1)i
∑
j 6=i

dkbc
j (G′; 2λφ) ≤ dkbc

i (G′; 2λφ)
∑
j 6=i

(D1)j

This inequality holds, since

(D1)i ≤ dkbc
i (D; 2λφ) ≤ (D1)i

and

∀j 6= i : (D1)j ≥ dkbc
j (D; 2λφ) ≥ (D1)j,

by construction of D and D. A similar argument can be applied to the upper bound, as

required.

Proof of Proposition 5. The distribution the (As,Xs) is equal to the following marginalized
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distribution of (G,X)

P (As = As,X = xs; θ) =
∑

A−s∈G−s

∑
x−s

P (G = (As, A−s),X = (xs,x−s); θ)

=
∑

A−s∈G−s

∑
x−s

P (G = (As, A−s)|X = (xs,x−s); θ)P (X−s = x−s)

=
∑

A−s∈G−s

∑
x−s

(∫
ψ(G = (As, A−s)|x, ε; θ)dFε(ε)

)
P (X−s = x−s)

=
∑
x−s

∫ [ ∑
A−s∈G−s

ψ(G = (As, A−s)|x, ε; θ)

]
dFε(ε)P (X−s = x−s),

where the fourth equality follows from Tonelli’s Theorem (Tonelli, 1909).

Before proving Theorem 1, I require the following two tools from random set theory (Molchanov,

2005; Molchanov & Molinari, 2018; Molinari, 2019).

Definition B1 (Measurable Selection). Let Z be a random set. A measurable selection of

Z is a random element z ∈ Rd such that z(ω) ∈ Z(ω) almost surely. The set of all selections

from Z is denoted Sel(Z).

The following Lemma is due to (Artstein, 1983).

Lemma B2 (Artstein’s Inequality). A probability distribution µ on Rd is the distribution of

a selection of a random closed set Z in Rd iff

µ(K) ≤ T Z(K) ≡ P {Z ∩ K 6= ∅}.

for all compact sets K ⊂ Rd.

Proof of Theorem 1. Under Assumptions 1, the conditional distribution of Gn̄ for each Gn̄ ∈
Gn̄ is revealed. The parameter θ is in HP [θ] if and only if the model-implied distribution

coupled with the selection mechanism yields the same conditional distribution of Gn̄ in the

data.

Start by considering any θ ∈ HP [θ]. By the definition of HP [θ], according to Lemma B2

the terms Gn̄ and Gps
θ (x, ε, n̄) can be realized on the same probability space as the random

element Gn̄
′

=d Gn̄ and random set Gps
′

θ (x, ε, n̄) =d Gps
θ (x, ε, n̄) with the property that
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Gn̄
′ ∈ Sel(Gps

′

θ (x, ε, n̄)). Since Sel(Gps
′

θ (x, ε, n̄)) includes all measurable selections, I can

choose the one that assigns probability one to Gn̄
′
, which is exactly the selection mechanism

needed that yields the same distribution observed in the data.

Now suppose that θ ∈ Θ is such that a valid selection mechanism exists with the property

that the model-implied distribution coupled with the selection mechanism yields the same

distribution of Gn̄ observed in the data. It follows that there is a selection of Gps
θ (x, ε, n̄)

with the same distribution as the selection mechanism whose conditional distribution is

P (Gn̄|x),x− a.s.; hence θ ∈ HP [θ].

Proof of Theorem 2. Consider any θ ∈ HP [θ], As, and xs such that |s| ≤ q and s ⊂ n̄, and

fix K such that ∀Gn̄, G̃n̄ ∈ K with As = G̃s, otherwise G ∈ K is unrestricted. Let Gn̄−s

denote the links between individuals in s with those in n̄− s. Observe that

P (As = As,X = xs; θ) =
∑
x−s

∑
Gn̄−s∈Gn̄−s

P (Gn̄ = (As, Gn̄−s)|x; θ)P (x−s)

=
∑
x−s

P (Gn̄ ∈ K|x)P (x−s)

≤
∑
x−s

T Gpsθ (x,ε,n̄)(K;Fε)P (x−s),

since θ ∈ HP [θ]. Since K imposes no restrictions on Gij with i ∈ s and j ∈ n̄− s,

T Gpsθ (x,ε,n̄)(K;Fε) = P ({Gps
θ (x, ε, n̄) ∩ K 6= ∅}, ε ∼ Fε)

= P (there exists a A−s such that (As, A−s) is pairwise stable, ε ∼ Fε)

=

∫
ε∈Eu(As,x;θ)∪Em(As,x;θ)

dFε(ε)

≤
∫
ε∈Ea(As,x;θ)

dFε(ε).

Therefore m2(As,xs; θ) ≤ 0 for all (As,xs). In order to obtain the lower bound, i.e.

m1(As,xs; θ) ≤ 0, I consider the complement of K and use the containment functional
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to relate these inequalities to the capacity functional. Defining K as above,

1− P (As = As,X = xs; θ) =
∑
x−s

∑
Gn̄−s∈Gn̄−s

P (Gn̄ = (As, Gn̄−s)|x; θ)P (x−s)

= 1−
∑
x−s

P (Gn̄ ∈ K|x)P (x−s)

=
∑
x−s

(
1− P (Gn̄ ∈ K|x)

)
P (x−s)

=
∑
x−s

P (Gn̄ ∈ Kc|x)P (x−s)

≤
∑
x−s

T Gpsθ (x,ε,n̄)(Kc;Fε)P (x−s)

≤ 1−
∑
x−s

P (Gps
θ (x, ε, n̄) ⊂ K;Fε)P (x−s)

= 1−
∑
x−s

P

(
all pairwise stable networks contain

(As,x) as a subnetwork, ε ∼ Fε

)
P (x−s)

= 1−
∑
x−s

∫
ε∈Eu(As,x;θ)

dFε(ε)P (x−s).

It follows that P (As = As,Xs = xs; θ) ≥
∑
x−s

∫
ε∈Eu(As,x;θ)

dFε(ε)P (xs) and hence

m1(As,xs; θ) ≤ 0. I conclude that θ ∈ OP [θ] and so OP [θ] is a valid outer region.

Proof of Theorem 3. This follows from a similar argument to Theorem 2. The additional

step is to show that the network statistic also belongs to the sharp identified set in Equation

(5). This follows from the fact that moment inequalities for Eθ(d(G)|x) are constructed

from the solutions to Problem 1.

Formally, consider any (β, θ) ∈ HP [β, θ]. Following similar logic to Theorem 2, mj(A
s,xs; θ) ≤

0 for j = 1, 2 for all (As,xs). It remains to show that mj(x; β, θ) ≤ 0 for j = 3, 4. Since
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(β, θ) ∈ HP [β, θ] it follows that there exists a selection mechanism ψ(·) such that

β =

∫
ε

∑
G∈G

d(G)ψ(G = G|x, ε; θ)dFε(ε)

≤
∫
ε

∑
G∈G

d(G,G)ψ(G = G|x, ε; θ)dFε(ε)

=

∫
ε

d(G,G)
∑
G∈G

ψ(G = G|x, ε; θ)dFε(ε)

=

∫
ε

d(G,G)dFε(ε),

where the last equality follows from Definition 7 where the selection mechanism integrates

to one. A similar argument shows that

β ≥
∫
ε

d(G,G)dFε(ε).

Hence mj(x; β, θ) ≤ 0 for j = 3, 4 and (β, θ) ∈ OP [β, θ], as required.

Proof of Theorem 4. The proof parallels Theorem 3 with the modification that the network

statistics are evaluated at the bounds implied by the subgame admissible lattice.
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C Examples

Example C1 (Strategic Campaign Donations with Peer Effects). Battaglini and Patacchini

(2018) develop a model where legislators vote based on a utility function that is linear in four

factors: (1) donations from a special interest group; (2) their friends’ voting decision; (3) an

idiosyncratic unobserved shock that has bounded support; and (4) her preference over whether

the policy is approved or not, which could be negative, positive, or zero. For exposition, I

focus on the case where the legislator does not care about whether the policy is approved.

There are two special interest groups – one group would like the policy to be approved (group

a) and the other would like the policy to not be approved and status quo to hold (group b).

The special interest groups each have wealth W to allocate between the n legislators. Group a

allocates donations to maximize the probability that the policy is passed conditional on group

b’s allocation and legislators’ voting policy, and group b allocates donations to minimize this

probability. The optimal allocation is symmetric and is given by:

s∗ = arg max
s∈R+

n∑
j=1

dkbcj (G′; 2λφ)vj(sj) s.t.
n∑
j=1

sj ≤ W,

where sj is the allocation to legislator j, vj(sj) is the utility from donations (factor (1)

from above), λ is the social multiplier (factor (2)), and φ is the length of the support for the

idiosyncratic shock (factor (3)). The function vj(·) is assumed to satisfy the Inada conditions.

For example, if vj(s) = κ ln(s) for all j, then

s∗i =
dkbci (G′; 2λψ)W∑
j d

kbc
j (G′; 2λφ)

,

so that legislators with high KBC (i.e., influential legislators) receive a larger share of the

donations relative to legislators with low KBC.

Example C2 (Production Equilibrium with an Intersectoral Network, (Acemoglu, Car-

valho, Ozdaglar, & Tahbaz-Salehi, 2012)). Consider an economy where each firm or sector

i produces good xi using a technology that use labor input li and output of sector j, xij,

as inputs. For example, General Motors uses labor and steel sheets as inputs for the pro-

duction of automobiles. Let G denote the weighted and directed input-output intersectoral

network. Component Gij is positive if and only if sector j is an input supplier to sector i.

With Cobb-Douglas preferences and a Cobb-Douglas production function, the logarithm of
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real value added is given by:

y = v′e,

where ei i.i.d log productivity shocks and

v =
α

n
(I − (1− α)G′)−11

is the influence vector, which is also the Katz-Bonacich centrality measure with weights 1

and social multiplier (1 − α), Here α is share of labor hired by each sector. The influence

vector plays an important roll for the asymptotic distribution of real value added output.

Example C3. As an example, suppose n = {1, 2, 3, 4} and s = {1, 2} and

G =


0 1 0 1

1 0 0 1

0 0 0 0

1 1 0 0

 .

Then

As =

[
0 1

1 0

]
and A−s =


· · 0 1

· · 0 1

0 0 0 0

1 1 0 0

 .
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D Simulated Application Results: Figures

Figure D1: Admissible Lattice Size

(a) Expected fraction of links in the admissible lattice with
popularity spillover only. The dotted line represents the frac-
tion of links in G and the solid line represents the fraction
of links in G. The vertical distance between the two is pro-
portional to size of the admissible lattice. These results are
reported for n = 50.

(b) Expected fraction of links in the admissible lattice with
popularity spillover only and n = 100.

(c) Expected fraction of links in the admissible lattice with
mutual friend spillover only. The dotted line represents the
fraction of links in G and the solid line represents the fraction
of links in G. The vertical distance between the two is pro-
portional to size of the admissible lattice. These results are
reported for n = 50.

(d) Expected fraction of links in the admissible lattice with
mutual friend spillover only and n = 100.
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Figure D2: Admissible Lattice Size with Two Channels of Spillovers

(a) Expected fraction of links in for the lower bound of
the admissible lattice, G, with both channels of spillovers.
These results are reported for n = 50.

(b) Expected fraction of links in for the upper bound of the
admissible lattice, G, with both channels of spillovers. These
results are reported for n = 50.

(c) Expected fractional difference between the upper and
lower bound of the addmissible lattice with both channels of
spillovers. These results are reported for n = 50.
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E Simulated Application Results: Tables

Population Popularity Max Subnetwork Size, s
Size Spillover, γ1 q = 2 q = 3 q = 4
50 0 [0.000,0.000] [0.000,0.000] [0.000,0.000]

0.5 [0.491,0.512] [0.491,0.512] [0.491,0.510]

1 [0.979,1.018] [0.984,1.018] [0.985,1.018]

100 0 [0.000,0.000] [0.000,0.000] [0.000,0.000]

0.5 [0.494,0.504] [0.494,0.503] [0.500,0.503]

1 [0.991,1.009] [0.991,1.006] [0.992,1.000]

Table E1: Identified set for the popularity spillover with no homophily and one channel of spillovers. The
identified set is reported in the square brackets.

Pop Mutual Friend Max Subnetwork Size
Size Spillover, γ2 q = 2 q = 3 q = 4
50 0 [0.000,0.000] [0.000,0.000] [0.000,0.000]

0.5 [0.495,0.515] [0.499,0.501] [0.499,0.500]

1 [0.988,1.014] [0.988,1.012] [0.996,1.012]

100 0 [0.000,0.000] [0.000,0.000] [0.000,0.000]

0.5 [0.498,0.503] [0.500,0.502] [0.500,0.501]

1 [0.993,1.006] [0.994,1.002] [0.995,1.002]

Table E2: Identified set for the popularity friend spillover with no homophily and one channel of spillovers.
The identified set is reported in the square brackets.
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λ Pop. Max Subnetwork Size True Worst-Case
Spillover q = 2 q = 3 q = 4 Effort Bounds

0.01 0 [1.324,1.324] [1.324,1.324] [1.324,1.324] 1.324 [1.300,1.356]

0.5 [1.421,1.426] [1.421,1.426] [1.421,1.426] 1.422 [1.383,1.462]

1 [1.577,1.592] [1.579,1.592] [1.579,1.592] 1.580 [1.509,1.626]

0.02 0 [1.972,1.972] [1.972,1.972] [1.972,1.972] 1.972 [1.803,2.383]

0.5 [2.527,2.562] [2.528,2.560] [2.528,2.558] 2.528 [2.152,3.190]

1 [3.991,4.239] [4.008,4.239] [4.016,4.239] 4.020 [2.850,5.532]

Table E3: Bounds on KBC using my framework. I restrict to one channel of spillovers (popularity) and set
n = 50 in each network. I assume that 25 individuals are sampled.

Max Subnetwork Size
γ1 γ2 q = 2 q = 3 q = 4
0 0 [0.000,0.000] [0.000,0.000] [0.000,0.000]

0.5 0 [0.000,0.510] [0.054,0.510] [0.227,0.510]

0 0.5 [0.000,0.312] [0.000,0.309] [0.000,0.0308]

0.5 0.5 [0.000,0.904] [0.000,0.904] [0.0233,0.883]

Table E4: Identified region for the popularity spillover γ1 when both channels of spillovers are present.
The popularity spillover is γ1 and the mutual friend spillover is γ2. Population size N = 50.

Max Subnetwork Size
γ1 γ2 q = 2 q = 3 q = 4
0 0 [0.000,0.000] [0.000,0.000] [0.000,0.000]

0.5 0 [0.000,0.768] [0.000,0.673] [0.000,0.410]

0 0.5 [0.000,0.502] [0.000,0.502] [0.437,0.502]

0.5 0.5 [0.000,1.164] [0.000,1.144] [0.0233,1.010]

Table E5: Identified region for the mutual friend spillover γ2 when both channels of spillovers are present.
The popularity spillover is γ1 and the mutual friend spillover is γ2. Population size N = 50.
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Pop. Mutual Max Subnetwork Size True Worst-Case
Spillover Spillover q = 2 q = 3 q = 4 KBC Bounds

0 0 [1.336, 1.336] [1.336, 1.336] [1.336, 1.336] 1.336 [1.241, 1.473]

0 0.25 [1.363, 1.364] [1.363, 1.364] [1.363, 1.364] 1.363 [1.259, 1.497]

0 0.5 [1.396, 1.398] [1.397, 1.398] [1.398, 1.398] 1.398 [1.282, 1.526]

0.25 0 [1.386, 1.387] [1.386, 1.387] [1.386, 1.387] 1.386 [1.274, 1.517]

0.25 0.5 [1.428, 1.431] [1.429, 1.431] [1.429, 1.430] 1.430 [1.304, 1.556]

0.25 1 [1.478, 1.483] [1.478, 1.482] [1.479, 1.482] 1.481 [1.335, 1.598]

0.5 0 [1.452, 1.455] [1.452, 1.455] [1.452, 1.454] 1.453 [1.319, 1.576]

0.5 0.5 [1.502, 1.507] [1.502, 1.507] [1.502, 1.506] 1.504 [1.350, 1.618]

0.5 1 [1.573, 1.580] [1.573, 1.579] [1.573, 1.579] 1.576 [1.395, 1.676]

Table E6: Bounds on KBC using my framework. I allow for both channels spillovers (popularity) and set
n = 50 in each network. There are 25 individuals that are sampled in each network. The decay parameter
λ = 0.01.

Pop. Mutual Max Subnetwork Size True Worst-Case
Spillover Spillover q = 2 q = 3 q = 4 KBC Bounds

0 0 [1.336,1.336] [1.336,1.336] [1.336,1.336] 1.336 [1.241,1.473]

0 0.25 [1.363,1.364] [1.363,1.364] [1.363,1.364] 1.364 [1.259 ,1.497]

0 0.5 [1.396,1.398] [1.397,1.398] [1.398,1.398] 1.398 [1.282, 1.526]

0.25 0 [1.386,1.387] [1.386,1.387] [1.386,1.387] 1.386 [1.275, 1.517]

0.25 0.25 [2.512,2.535] [2.519,2.533] [2.521,2.532] 2.527 [1.905 , 3.623]

0.25 0.5 [2.857,2.895] [2.860,2.889] [2.863,2.888] 2.879 [2.053, 4.108]

0.5 0 [2.670,2.695] [2.670,2.691] [2.670,2.690] 2.679 [1.975, 3.839]

0.5 0.25 [3.044,3.090] [3.046,3.087] [3.048,3.080] 3.065 [2.127, 4.368]

0.5 0.5 [3.718,3.800] [3.721,3.797] [3.725,3.792] 3.762 [2.376, 5.328]

Table E7: Bounds on KBC using my framework. I allow for both channels spillovers (popularity) and set
n = 50 in each network. There are 25 individuals that are sampled in each network. The decay parameter
λ = 0.02.
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F Partially Observed Network and Subnetworks

Figure F1: Partially Observed Network

(a) The researcher samples n̄ individuals and these individuals
reveal all of their direct connections. The revealed connections
is represented by the shaded area.

(b) The network is assumed to be symmetric. All links between
individuals in n − n̄ to n̄ are also observed. As a result, the
observed network is represented by the shaded area. The ob-
served portion of the network is Gn̄ and the unobserved portion
is G−n̄.
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Figure F2: Subnetworks and the Partially Observed Network

(a) A subnetwork is constructed from a set of individuals s ⊂ n̄.
It contains all links between individuals in s. The subnetwork
As is represented by the dark shaded area.

(b) The completion to a subnetwork denoted A−s include all
links between individuals not in As. The compleition to the
subnetwork is represented by the striped area.
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G Table of Notation

Table G1: Table of Notation

nt Set of individuals in environment t.

n̄t Set of individuals interviewed about social connections in environment t.

G, Gij Adjacency matrix where the ij element is equal to one iff i and j are linked.

As, A−s Adjacency matrix for the subnetwork with individuals in s ⊂ {1, . . . , n} and its completion.

x Network-formation observable characteristic.

ε Network-formation unobservable characteristic.

G, Gn̄, X, As, A−s Random elements of the above realized values.

Gn̄, G−n̄ Partially observed network and its completion.

G+ {ij}, G− {ij} Network G with link ij added and deleted, respectively

G(x, ε,θ), G(x, ε,θ) Networks that define the admissible lattice.

θ, θ0 The network formation parameter and its true value.

πi(g,x, ε) Agent i’s payoff function, where x are observable, ε unobservable.

Πij(g,x, ε) Agent i’s marginal payoff function over link ij.

Gps
θ (x, ε) Collection of pairwise stable networks.

Gθ(x, ε) Collection of admissible networks.

Gθ(x, Gn̄, ε) Collection of conditional admissible networks.

L(G,G) Generic network lattice containing networks G such that G ≤ G ≤ G.

G Collection of undirected networks with no self loops.

ψ(G|x, ε) Selection mechanism for network G.

d(G) Generic network statistic.

dkbc(G;w, λ) Katz-Bonacich Centrality.

P (·) Probability measure.

mj(·) Moment inequality

P Joint distribution of observables.

HP [.] Sharp identification region for parameter(s) in the square bracket (function of P )

OP [.] Outer region for parameter(s) in the square bracket (function of P )

Rn
+, Rn

− Positive and negative quadrant of the n-dimensional Euclidean space.

Z Integers.

An admissible network is one that is bounded between the smallest and largest pairwise stable network.
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